The effect of soybean substitution with pigeon peas (cajanus cajan) on physical characteristics, antioxidant properties, nutrient content, and sensory characteristics of tempeh

Rini Widyastuti, Budi Setiawan, Zuraidah Nasution, Made Astawan

Abstract


ABSTRAK

Latar Belakang: Kacang gude (Cajanus cajan) memiliki kandungan komponen bioaktif yang tinggi, namun pemanfaatannya dalam produk fermentasi seperti tempe masih terbatas.

Tujuan: Penelitian ini bertujuan untuk mengevaluasi pengaruh substitusi kedelai dengan kacang gude terhadap sifat fisik, komponen bioaktif, kandungan gizi, bioaksesibilitas mineral, dan sifat sensori tempe.

Metode: Tempe dibuat dengan variasi rasio kacang gude dan kedelai (F1: 60:40, F2: 50:50, F3: 40:60) menggunakan rancangan acak lengkap (RAL) dengan tiga ulangan. Sifat fisik yang dianalisis meliputi pertumbuhan miselium, daya iris, analisis warna dan rendemen. Komponen bioaktif meliputi analisis total kandungan flavonoid, fenolik, serta dengan metode penghambatan DPPH. Kandungan gizi dianalisis yakni kandungan serat total dan kandungan zat besi serta bio aksesibilitasnya. Sifat sensoris tempe dianalisis dengan uji hedonik menggunakan 35 panelis semi terlatih untuk memperoleh formula yang paling banyak disukai. Selanjutnya dilakukan uji deskriptif dengan metode konsensus pada formula terpilih.

Hasil:  Semua formula tempe berhasil dikembangkan yang ditunjukkan dengan sifat fisik yang baik, termasuk pertumbuhan miselium, warna putih, dan tekstur yang kompak. Tempe substitusi kacang gude menunjukkan penurunan kecerahan dan  peningkatan daya iris seiring bertambahnya proporsi kacang gude. Selain itu terdapat peningkatan kandungan total flavonoid, fenolik serta antioksidan seiring peningkatan kandungan kacang gude. Analisis kandungan gizi menunjukkan terjadi penurunan signifikan kandungan serat total pada F3 (40:60). Kadar zat besi (Fe) antar formula tidak menunjukkan perbedaan yang signifikan, namun bioaksesibilitas Fe menurun signifikan seiring peningkatan rasio kacang gude. Uji kesukaan menunjukkan penurunan signifikan pada F3 (40:60), sehingga formula F2 (50:50) dipilih untuk uji deskripsi. Tempe substitusi kacang gude segar memiliki aroma fermentasi yang dominan, namun proses penggorengan dapat mengurangi intensitasnya.

Kesimpulan: Penelitian ini menunjukkan bahwa substitusi kedelai dengan kacang gude berpotensi meningkatkan nilai fungsional tempe, khususnya potensi antioksidan dengan tetap mempertahankan penerimaan sensori, sehingga berpotensi sebagai bahan alternatif yang dapat dikembangkan pada pembuatan tempe.

 

KATA KUNCI: antioksidan; fermentasi; kacang gude; kedelai; tempe

  

ABSTRACT

Background: Pigeon pea (Cajanus cajan) recognized for its high content of bioactive compounds; however, its application in fermented products, such as tempeh, remains underexplored.

Objectives: This study aimed to evaluate the impact of substituting soybeans with pigeon peas on the bioactive components, mineral bioaccessibility, and sensory properties of tempeh.

Methods: A completely randomized design (CRD) with three replications was employed, using different soybean-to-pigeon pea ratios: F1(60:40), F2(50:50), F3 (40:60).. The physical properties analyzed included mycelial growth, cutting force, color analysis, and yield. Bioactive components evaluated through total phenolic and flavonoid content, and antioxidant activity using the DPPH radical scavenging assay. Nutritional analysis covered total dietary fiber, iron content, and their bioaccessibility. Sensory evaluation involved a hedonic test with 35 semi-trained panelists to determine the most preferred formulation, followed by a descriptive sensory analysis using the consensus method. 

Results: All tempeh formulas were successfully developed, exhibiting good physical properties, including mycelium growth, white color, and compact texture. The tempeh samples demonstrated decreased lightness and increased cutting force with the addition of pigeon peas. The results indicated that increasing the proportion of pigeon peas significantly enhanced total antioxidant activity, total phenolic content, and flavonoid levels (p < 0.05). Nutrient analysis showed total fiber content significantly decreased in F3 (40:60). Iron (Fe) levels remained consistent across formulations (8.55 to 8.92 mg/100 g); however, Fe bioaccessibility significantly declined with higher pigeon pea ratios. The acceptance test revealed a notable decrease in acceptability for F3 (40:60), leading to the selection of F2 (50:50) for descriptive analysis.  Fresh tempe substituted pigeon peas exhibited a dominant fermentation aroma, which was subsequently mitigated by the frying process. 

Conclusions: These findings suggest that soybean substitution with pigeon peas can enhance the functional value of tempeh, especially its antioxidant potential, without compromising sensory quality, presenting a promising alternative for further tempeh development.

 

KEYWORD: antioxidants, fermentation, pigeon pea, soybean, tempeh

 

 

Article submitted on May 08, 2025; Articles revised on May 26, 2025; Articles received on August 08, 2025; Articles available online on November 28, 2025


Keywords


antioksidan; fermentasi; kacang gude; kedelai; tempe; antioxidants, fermentation, pigeon pea, soybean, tempeh

References


Badan Pangan Nasional. Situasi Konsumsi Pangan Nasional Tahun 2023. Jakarta: Badan Pangan Nasional; 2024.

Wahyuningsih S, Amara VD, Rinawati, Sehusman, Sabarella, Komalasari WB. Buletin Konsumsi Pangan Semester 2 2024. Vol. 15. Jakarta: Pusat Data dan Informasi Pertanian; 2024

[Kementan RI]. Analisis Komoditas Pangan Strategis 2023. Mas’ud, Wahyuningsih S, editors. Vol. 1. Pusat Data dan Sistem Informasi Pertanian; 2023.

Risandi LS. Penyebab Ketergantungan Indonesia Terhadap Impor Kedelai. Vol. 02; 2022.

[BPS]. Impor Kedelai Berdasarkan Negara Asal Utama 2017-2022 [Internet]. 2023 [cited 2023 Dec 10]. Available from: https://www.bps.go.id/id/statistics-table/1/ MjAxNSMx/impor-kedelai-menurut-negara-asal-utama--2017-2022.html.

Gargi B, Semwal P, Jameel Pasha SB, Singh P, Painuli S, Thapliyal A, et al. Revisiting the Nutritional, Chemical and Biological Potential of Cajanus cajan (L.) Millsp. Molecules 2022; (27: ):1–20. https://doi.org/10.3390/molecules27206877

Abebe B. The Dietary Use of Pigeon Pea for Human and Animal Diets. Sci World J. 2022;2022:1–12. https://doi.org/10.1155/2022/4873008

Yuniastuti E, Sukaya, Dewi LC, Delfianti MNI. The Characterization of Black Pigeon Pea (Cajanus cajan) in Gunungkidul, Yogyakarta. Caraka Tani: Journal of Sustainable Agriculture 2020;35(1):78–88. https://doi.org/10.20961/CARAKATANI.V35I1.28400

A’yuni NRL, Marsono Y, Marseno DW, Triwitono P. Physical Characteristics, Nutrients, and Antinutrients Composition of Pigeon Pea (Cajanus cajan (L.) Millsp.) Grown in Indonesia. Food Res 2022;6(2):53–63. https://doi.org/10.26656/fr.2017.6(2).172

[Kemenkes RI]. Tabel Komposisi Pangan Indonesia. Jakarta: Kementerian Kesehatan Republik Indonesia; 2020.

Pranati J, Chilakamarri V, Kalyan A, Shruthi HB, Bomma N, Yogendra K, et al. Strategizing pigeonpea for enhancing health-benefitting traits: A path to nutritional advancements. Vol. 3, Crop Design. Elsevier B.V.; 2024. https://doi.org/10.1016/j.cropd.2024.100068

Tungmunnithum D, Hano C. Cosmetic Potential of Cajanus cajan (L.) Millsp: Botanical Data, Traditional Uses, Phytochemistry and Biological Activities. Cosmetics 2020;7(4):1–12. https://doi.org/10.3390/cosmetics7040084

Jayanti ET. Kandungan Protein Biji dan Tempe Berbahan Dasar Kacang-kacangan Lokal (Fabaceae) non Kedelai. Bioscientist : Jurnal Ilmiah Biologi 2019;7(1). https://doi.org/10.33394/bjib.v7i1.2454

Kusumawati I, Astawan M, Prangdimurti DE. Production Process and Characteristic of Tempe from Dehulled Soybean. Pangan 2020;29(2):117–26. https://doi.org/10.33964/jp.v29i2.492

[BSN]. SNI 3144:2015, Tempe kedelai [Internet]; 2015. Available from: www.bsn.go.id

Erkan SB, Gürler HN, Bilgin DG, Germec M, Turhan I. Production and Characterization of Tempeh from Different Sources of Legume by Rhizopus oligosporus. LWT 2020;119. https://doi.org/10.1016/j.lwt.2019.108880

Hanny Wijaya C, Nurjanah S, Dinanta Utama Q. Implementasi dan Analisis Keuntungan Teknologi Back-Slopping pada Pembuatan “Quick Tempe” Skala Industri Rumah Tangga. Pangan 2015;24(1):49–62. https://doi.org/10.5454/mi.15.3.1

AOAC. Official methods of analysis of AOAC international. 21st Edition. Maryland, USA: AOAC International; 2019.

Baliyan S, Mukherjee R, Priyadarshini A, Vibhuti A, Gupta A, Pandey RP, et al. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules 2022;27(4):1–19. https://doi.org/10.3390/molecules27041326

Nurhasnawati H, Sundu R, Sapri, Supriningrum R, Kuspradini H, Arung ET. Antioxidant Activity, Total Phenolic and Flavonoid Content of Several Indigenous Species of Ferns in East Kalimantan, Indonesia. Biodiversitas 2019;20(2):576–80. https://doi.org/10.13057/biodiv/d200238

Megazyme. Total Dietary Fiber Assay Procedure. Co. Wicklow, Ireland: Megazyme international; 2017. Available from: www.megazyme.com

Mulet-Cabero AI, Egger L, Portmann R, Ménard O, Marze S, Minekus M, et al. A standardised semi-dynamic: in vitro digestion method suitable for food-an international consensus. Food Funct 2020;11(2):1702–20. https://doi.org/10.1039/C9FO01293A

Milinda IR, Ratna Noer E, Ayustaningwarno F, Fithra Dieny F. Analisis Sifat Fisik, Organoleptik dan Kandungan Asam Lemak pada Tempe Mete dan Tempe Kedelai. Jurnal Aplikasi Teknologi Pangan [Internet]. 10(4):2021. Available from: https://doi.org/10.17728/jatp.10877

Chambers EI. Consensus Methods for Descriptive Analysis. In: Descriptive Analysis in Sensory Evaluation. Chichester, UK: John Wiley & Sons, Ltd; 2018. p. 213–9.

Azra JM, Setiawan B, Nasution Z, Sulaeman A. Effects of Variety And Maturity Stage of Coconut on Physicochemical and Sensory Characteristics of Powdered Coconut Drink. Foods and Raw Mater 2021;9(1):43–51. https://doi.org/10.21603/2308-4057-2021-1-43-51

Oh H, Jo Y, Kim MK. Descriptive Analysis of Seven Leguminous Plants in Korea. Prev Nutr Food Sci 2022;27(2):241–7. https://doi.org/10.3746/pnf.2022.27.2.241

Kustyawati ME, Nurdjanah. Profile of Aroma Compounds and Acceptability of Modified Tempeh. Int Food Res J. 2017;24(2):734–40.

Zou G, Xiao Y, Wang M, Zhang H. Detection of Bitterness and Astringency of Green Tea with Different Taste by Electronic Nose and Tongue. PLoS One 2018;13(12). https://doi.org/10.1371/journal.pone.0206517

Tan ZJ, Abu Bakar MF, Lim SY, Sutimin H. Nutritional Composition and Sensory Evaluation of Tempeh from Different Combinations of Beans. Food Res 2024;8(2):138–46. https://doi.org/10.26656/fr.2017.8(2).088

Rizkiaji FN. Pengaruh Lama Fermentasi Anaerobik terhadap Kandungan Gaba pada Tempe Kacang Gude dan Tempe Kedelai. [Bogor]: IPB University; 2023.

Fitri SMA, Astawan M, Nurtama B, Wresdiyati T, Sardjono RE. Sensory Profile of Tempe Made from a Combination of Velvet Bean and Soybean Using Rate-All-That-Apply. Food Res 2024; 8:(4):20–32. https://doi.org/10.26656/fr.2017.7%28s2%29.3

Sharma S, Singh A, Singh B. Characterization of In Vitro Antioxidant Activity, Bioactive Components, and Nutrient Digestibility in Pigeon Pea (Cajanus cajan) as Influenced by Germination Time and Temperature. J Food Biochem 2019;43(2). https://doi.org/10.1111/jfbc.12706

Gebregziabher BS, Zhang S, Ghosh S, Shaibu AS, Azam M, Abdelghany AM, et al. Origin, Maturity Group and Seed Coat Color Influence Carotenoid and Chlorophyll Concentrations in Soybean. Plants 2022.1;11(7). https://doi.org/10.3390/plants11070848

Le DT, Kumar G, Williamson G, Devkota L, Dhital S. (Poly)phenols and Dietary Fiber in Beans: Metabolism and Nutritional Impact in the Gastrointestinal Tract. Food Hydrocoll 2024.1;156. https://doi.org/10.1016/j.foodhyd.2024.110350

Mutha RE, Tatiya AU, Surana SJ. Flavonoids as Natural Phenolic Compounds and Their Role in Therapeutics: An Overview. Futur J Pharm Sci 2021 Jan 20;7(1). https://doi.org/10.1186/s43094-020-00161-8

Choi HW, Park SE, Son HS. Color Image Expression through CIE L*a*b* System in Foods. J. Soc. Sci. Nutr 2023 ;52(2):223–9. https://doi.org/10.3746/jkfn.2023.52.2.223

Astawan M, Prayudani APG, Haekal M, Wresdiyati T, Sardjono RE. Germination Effects on The Physicochemical Properties and Sensory Profiles of Velvet Bean (Mucuna pruriens) and Soybean Tempe. Front Nutr 2024;11. https://doi.org/10.3389/fnut.2024.1383841

Amanah YS, Kholifatuddin Sya’di Y, Handarsari E. Kadar Protein Dan Tekstur Pada Tempe Koro Benguk dengan Substitusi Kedelai Hitam. Jurnal Pangan dan Gizi 2019;9(02):119–27. https://doi.org/10.26714/jpg.9.2.2019.69-78

Haji A, Teka TA, Yirga Bereka T, Negasa Andersa K, Desalegn Nekera K, Geleta Abdi G, et al. Nutritional Composition, Bioactive Compounds, Food Applications, and Health Benefits of Pigeon Pea (Cajanus cajan L. Millsp.): A Review. Vol. 6, Legume Science. John Wiley and Sons Inc; 2024. https://doi.org/10.1002/leg3.233

A’yuni NRL, Marsono Y, Marseno DW, Triwitono P. Composition, structure, and physicochemical characteristics of pigeon pea (Cajanus cajan) starches from Indonesia. Biodiversitas. 2021 Aug 1;22(8):3430–9. https://doi.org/10.13057/biodiv/d220840

Biduski B, Silva WMF da, Colussi R, Halal SL de M El, Lim LT, Dias ÁRG, et al. Starch hydrogels: The influence of the amylose content and gelatinization method. Int J Biol Macromol 2018 Jul 1;113:443–9. https://doi.org/10.1016/j.ijbiomac.2018.02.144

Singh B, Singh JP, Kaur A, Singh N. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Res Int. 2017;101:1–16. https://doi.org/10.1016/j.foodres.2017.09.026

Yang SE, Vo TLT, Chen CL, Yang NC, Chen CI, Song TY. Nutritional Composition, Bioactive Compounds and Functional Evaluation of Various Parts of Cajanus cajan (L.) Millsp. Agriculture (Switzerland). 2020;10(11):1–13. https://doi.org/10.3390/agriculture10110558

Arinanti M. The Potential of Natural Antioxidant Compounds on Various Types of Beans. Ilmu Gizi Indonesia 2018;1(2):134–43. https://doi.org/10.21082/jpasca.v17n1.2020.48-58

Thepthanee C, Li H, Wei H, Prakitchaiwattana C, Siriamornpun S. Effect of Soaking, Germination, and Roasting on Phenolic Composition, Antioxidant Activities, and Fatty Acid Profile of Sunflower (Helianthus annuus L.) Seeds. Horticulturae 2024;10(4). https://doi.org/10.3390/horticulturae10040387

Meital A, Avi D, Liel G, Aharon B, Orit AS, Shmuel G. Effects of Soaking, Cooking, and Steaming Treatments on the Faba Bean Seeds’ Total Bioactive Compounds Content and Antioxidant Activity. J Food Nutr Res 2023;11(1):96–101. https://doi.org/10.12691/jfnr-11-1-9

Yudiono K, Ayu WC, Susilowati S. Antioxidant Activity, Total Phenolic, and Aflatoxin Contamination in Tempeh Made from Assorted Soybeans (Glycine max (L.) Mer). Food Res 2021;5(3):393–8. https://doi.org/10.26656/fr.2017.5(3).655

Liu T, Zhen X, Lei H, Li J, Wang Y, Gou D, et al. Investigating the Physicochemical Characteristics and Importance of Insoluble Dietary Fiber Extracted from Legumes: An In-depth Study on its Biological Functions. Food Chem 2024; 22. 52. https://doi.org/10.1016/j.fochx.2024.101424

Pinasti AS, Mahardika A, Dewi L. Produksi, kualitas dan cita rasa tempe biji labu kuning, biji bunga matahari dan kacang adzuki. Teknologi Pangan : Media Informasi dan Komunikasi Ilmiah Teknologi Pertanian 2021;12(2):209–19. https://doi.org/10.35891/tp.v12i2.2458

Michalak-Tomczyk M, Rymuszka A, Kukula-Koch W, Szwajgier D, Baranowska-Wójcik E, Jachuła J, et al. Studies on the Effects of Fermentation on the Phenolic Profile and Biological Activity of Three Cultivars of Kale. Molecules 2024; 29(8). https://doi.org/10.3390/molecules29081727

Zhong L, Fang Z, Wahlqvist ML, Wu G, Hodgson JM, Johnson SK. Seed coats of pulses as a food ingredient: Characterization, processing, and applications. Trends in Food Sci Technol 2018;80 p. 35–42. https://doi.org/10.1016/j.tifs.2018.07.021

Williams BA, Grant LJ, Gidley MJ, Mikkelsen D. Gut fermentation of dietary fibres: Physico-chemistry of Plant Cell Walls and Implications for Health. Int J Mol Sci 2017; 18. https://doi.org/10.3390/ijms18102203

[Kemenkes RI]. Peraturan Menteri Kesehatan Republik Indonesia Nomor 28Tahun 2019 tentang Angka Kecukupan Gizi yang Dianjurkan untuk Masyarakat Indonesia. Indonesia; 2019 p. 6–14.

Li Y, Niu L, Guo Q, Shi L, Deng X, Liu X, et al. Effects of Fermentation with Lactic Bacteria on The Structural Characteristics and Physicochemical and Functional Properties of Soluble Dietary Fiber from Prosomillet Bran. LWT 2022;( Jan 15);154. http://dx.doi.org/10.1016/j.lwt.2021.112609

Gao M, Dong C, Yuan Y, Ju Q, Zhao S, Hu Y, et al. A novel approach to improving the quality of whole-cotyledon tofu by control-released coagulant and the role of fiber. Appl Food Res 2025;5(1). https://doi.org/10.1016/j.afres.2024.100686

Ministry of Health Indonesia. Indonesian Food Composition Table. 1st ed. Jakarta: Ministry of Health Indonesia; 2020.

Rousseau S, Kyomugasho C, Celus M, Hendrickx MEG, Grauwet T. Barriers Impairing Mineral Bioaccessibility and Bioavailability in Plant-based Foods and The Perspectives for Food Processing. Crit Food Sci Nutr 2020; 60: p. 826–43. https://doi.org/10.1080/10408398.2018.1552243

Rodrigues DB, Marques MC, Hacke A, Loubet Filho PS, Cazarin CBB, Mariutti LRB. Trust your gut: Bioavailability and Bioaccessibility of Dietary Compounds. Curr Res Food Sci 2022 Jan 1;5:228–33. https://doi.org/10.1016/j.crfs.2022.01.002

Sine Y, Endang D, Soetarto S. Perubahan Kadar Vitamin dan Mineral pada Fermentasi Tempe Gude (Cajanus cajan L.). Jurnal Saintek Lahan Kering 2018;1(1):1–3. https://doi.org/10.32938/slk.v1i1.414

Motta-Romero HA, Guha S, Seravalli J, Majumder K, Rose DJ. The Effect of Food Processing on The Bioaccessibility of Cadmium and Micronutrients from Whole Wheat Porridge. Cereal Chem 2024; 101(4):759–70. https://doi.org/10.1002/cche.10778

Latunde-Dada GO, Kajarabille N, Rose S, Arafsha SM, Kose T, Aslam MF, et al. Content and Availability of Minerals in Plant-Based Burgers Compared with a Meat Burger. Nutrients 2023;15(12):1–11. https://doi.org/10.3390/nu15122732

Parmar N, Singh N, Kaur A, Thakur S. Comparison of color, anti-nutritional factors, minerals, phenolic profile and protein digestibility between hard-to-cook and easy-to-cook grains from different kidney bean (Phaseolus vulgaris) accessions. J Food Sci Technol 2017;54(4):1023–34. https://doi.org/10.1007/s13197-017-2538-3

Ramírez-Ojeda AM, Moreno-Rojas R, Cámara-Martos F. Mineral and trace element content in legumes (lentils, chickpeas and beans): Bioaccesibility and probabilistic assessment of the dietary intake. Journal of Food Composition and Analysis 2018;73:17–28. https://doi.org/10.1016/j.jfca.2018.07.007

Astuti RD, Fibri DLNFD, Dwi Handoko D, David W, Budijanto S, Shirakawa H. The Volatile Compounds and Aroma Description in Various Rhizopus oligosporus Solid-State Fermented and Nonfermented Rice Bran. Fermentation 2022;8:1–18. https://doi.org/10.3390/fermentation8030120

Sharma R, Garg P, Kumar P, Bhatia SK, Kulshrestha S. Microbial Fermentation and Its Role in Quality Improvement of Fermented Foods. Fermentation 2020;6.

Guo Z, Teng F, Huang Z, Lv B, Lv X, Babich O, et al. Effects of material characteristics on the structural characteristics and flavor substances retention of meat analogs. Food Hydrocoll 2020 1;105. https://doi.org/10.1016/j.foodhyd.2020.105752

Viana L, English M. The Application of Chromatography in The Study of Off-Flavour Compounds in Pulses and Pulse by-Products. Vol. 150, LWT 2021; 150. https://doi.org/10.1016/j.lwt.2021.111981

Prativi MBN, Astuti DI, Putri SP, Laviña WA, Fukusaki E, Aditiawati P. Metabolite Changes in Indonesian Tempe Production from Raw Soybeans to Over-Fermented Tempe. Metabolites 2023;13(2):1–16. https://doi.org/10.3390/metabo13020300




DOI: http://dx.doi.org/10.21927/ijnd.2025.0(0).%25p

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Nutrition and Dietetics (IJND) indexed by:

  


Lisensi Creative Commons View My Stats