The effects of consuming coconut milk on SGOT and SGPT levels of rats serum (Rattus norvegicus strain Wistar) fed with High Fat Diet (HFD)

Yuhanita Tyara Sari, Septa Surya Wahyudi, Zahra Febianti, Rini Riyanti, Aris Prasetyo

Abstract


ABSTRAK

Latar Belakang: Pola makan tinggi lemak merupakan pemicu utama terjadinya obesitas dan penyakit kardiometabolik. Akumulasi lemak yang berlebihan menyebabkan peningkatan Reactive Oxygen Species (ROS) melalui hidrokarbon aromatik polisiklik (PAH), yang bermanifestasi dalam peningkatan kadar Serum Glutamic Oxaloacetic Transaminase (SGOT) dan Serum Glutamic Pyruvic Transaminase (SGPT). Santan mengandung kandungan polifenol yang dapat menghambat mekanisme ROS. Penelitian sebelumnya menyebutkan bahwa pemberian MCFA dan polifenol pada tikus Wistar yang diinduksi hiperkalori tidak memberikan efek hepatoprotektif dan mengindikasikan adanya peningkatan kadar SGOT dan SGPT

Tujuan: Penelitian ini bertujuan untuk membuktikan pengaruh pemberian santan terhadap kadar SGOT dan SGPT pada tikus yang diinduksi diet tinggi lemak (HFD).

Metode: Penelitian ini merupakan penelitian true eksperimental dengan rancangan posttest control group design. Sampel terdiri dari 25 ekor tikus wistar (Rattus norvegicus) jantan dibagi menjadi 5 kelompok secara acak. Pengukuran SGOT dan SGPT dilakukan sesuai standarisasi IFCC (International Federation of Clinical and Chemistry and Medical Laboratory) dengan mengumpulkan sampel serum yang dilanjutkan dengan pemeriksaan menggunakan Spektrofotometer Biolyzer 100 untuk menganalisis kadar SGOT dan SGPT setelah 45 hari perlakuan. Analisis data menggunakan uji ANOVA.

Hasil: Hasil penelitian menunjukkan bahwa, peningkatan dosis santan makin menurunkan kadar baik SGOT/SGPT. Hasil uji Anova menunjukkan hasil yang signifikan secara statistik. Perbandingan LSD Post-hoc antara kelompok K dan P3 menunjukkan signifikansi terhadap SGPT (0,276) dan SGOT (0,707). Pemberian santan dosis 10 mL/kg berat badan/ hari pada tikus yang diinduksi HFD secara statistik, dapat menghambat peningkatan SGOT dan SGPT.

Kesimpulan : Berdasarkan hasil tersebut disimpulkan bahwa pemberian santan mampu mencegah peningkatan kadar SGOT dan SGPT.

KATA KUNCI: diet tinggi lemak;santan kelapa;SGOT;SGPT

 

ABSTRACT

Background: High-fat diets contribute to obesity and cardiometabolic diseases by increasing Reactive Oxygen Species (ROS)levels. Coconut milk's polyphenols may counteract ROS effects which manifests in increasing levels of Serum Glutamic Oxaloacetic Transaminase (SGOT) and Serum Glutamic Pyruvic Transaminase (SGPT). Coconut milk contains polyphenols which can inhibit the ROS mechanism. Previous research stated that administration of MCFA and polyphenols to Wistar rats induced by hypercalories did not provide a hepatoprotective effect and indicated an increase in SGOT and SGPT levels.

Objectives: This study aimed to prove the influence of coconut milk administration on the levels of SGOT and SGPT in rats induced by High Fat Diet (HFD).

Methods: The study was a true experimental research employing a posttest control group design. It involved 25 male Wistar rats (Rattus norvegicus) split into 5 randomly assigned groups. SGOT and SGPT measurements were carried out according to IFCC standards by collecting serum samples followed by examination using the photometric method to analyze SGOT and SGPT levels after 45 days of treatment. Data analysis used the ANOVA test using SPSS Statistics V21.0

Results: The results of research on both SGOT and SGPT levels showed that increasing the dose further reduces both SGOT and SGPT levels. The Anova test results show statistically significant results. Post-hoc LSD comparison between groups K and P3 showed significance for SGPT (0.276) and SGOT (0.707).

Conclusions: Based on these results, it can be concluded that high-dose coconut milk administration was able to prevent the increase in SGOT and SGPT levels

 

KEYWORDS: coconut milk; high fat diet; SGOT; SGPT


Keywords


diet tinggi lemak;santan kelapa;SGOT;SGPT; coconut milk; high fat diet; SGOT; SGPT

Full Text:

PDF

References


Mirmiran P, Amirhamidi Z, Ejtahed HS, Bahadoran Z, Azizi F. Relationship between diet and non-alcoholic fatty liver disease: A review article. Iran J Public Health. 2017;46(8):1007–17.

Mohammadi‐Nasrabadi F, Zargaraan A, Salmani Y, Abedi A, Shoaie E, Esfarjani F. Analysis of fat, fatty acid profile, and salt content of Iranian restaurant foods during the COVID‐19 pandemic: Strengths, weaknesses, opportunities, and threats analysis. Food Sci Nutr [Internet]. 2021 Nov 14;9(11):6120–30. Available from: https://onlinelibrary.wiley.com/doi/10.1002/fsn3.2563

Hadian Z, Khaneghah AM. Sugar, fat, saturated and trans fatty acid contents in Iranian cereal-based baked products. Food Sci Technol [Internet]. 2022;42. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0101-20612022000100575&tlng=en

Nur Suhascaryo K, Yudiantoro A. Roles Of Quisionary Data To Assess The Vco (Virgin Coconut Oil) Micro Business Performance In The Bojong 3 State, Bojong Village, Panjatan Sub-District, Kulons Progo Regency. J Phys Conf Ser [Internet]. 2021 Feb 1;1764(1):012202. Available from: https://iopscience.iop.org/article/10.1088/1742-6596/1764/1/012202

Tuminah S, Sihombing M. Frequent coconut milk intake increases the risk of vascular disease in adults. Universa Med [Internet]. 2015 Dec 15;34(2):149. Available from: https://univmed.org/ejurnal/index.php/medicina/article/view/30

Nadeeshani R, Wijayaratna UN, Prasadani WC, Ekanayake S, Seneviratne KN, Jayathilaka N. Comparison of the Basic Nutritional Characteristics of the First Extract and Second Extract of Coconut Milk. Int J Innov Res Sci Eng Technol [Internet]. 2015 Oct 25;3(10):9516–21. Available from: http://ijirset.com/upload/2015/october/3_Comparison.pdf

Hewlings S. Coconuts and Health: Different Chain Lengths of Saturated Fats Require Different Consideration. J Cardiovasc Dev Dis [Internet]. 2020 Dec 17;7(4):59. Available from: https://www.mdpi.com/2308-3425/7/4/59

Karunasiri AN, Gunawardane M, Senanayake CM, Jayathilaka N, Seneviratne KN. Antioxidant and Nutritional Properties of Domestic and Commercial Coconut Milk Preparations. Int J Food Sci [Internet]. 2020 Aug 3;2020:1–9. Available from: https://www.hindawi.com/journals/ijfs/2020/3489605/

Mat K, Abdul Kari Z, Rusli ND, Che Harun H, Wei LS, Rahman MM, et al. Coconut Palm: Food, Feed, and Nutraceutical Properties. Animals [Internet]. 2022 Aug 17;12(16):2107. Available from: https://www.mdpi.com/2076-2615/12/16/2107

Borsoi FT, Neri-Numa IA, de Oliveira WQ, de Araújo FF, Pastore GM. Dietary polyphenols and their relationship to the modulation of non-communicable chronic diseases and epigenetic mechanisms: A mini-review. Food Chem Mol Sci [Internet]. 2023 Jul;6:100155. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2666566222000831

Famurewa AC, Ugwu-Ejezie CS, Iyare EE, Folawiyo AM, Maduagwuna EK, Ejezie FE. Hepatoprotective effect of polyphenols isolated from virgin coconut oil against sub-chronic cadmium hepatotoxicity in rats is associated with improvement in antioxidant defense system. Drug Chem Toxicol [Internet]. 2021 Jul 4;44(4):418–26. Available from: https://www.tandfonline.com/doi/full/10.1080/01480545.2019.1598428

DebMandal M, Mandal S. Coconut (Cocos nucifera L.: Arecaceae): In health promotion and disease prevention. Asian Pac J Trop Med [Internet]. 2011 Mar;4(3):241–7. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1995764511600783

Hasanuddin A, Thahir S, Hardianti D. Gambaran Kadar Serum Glutamate Oxalocetik Transminase (SGOT) dan Glutamate Pyruvat Transminase (SGPT) pada Pasien Diabetes Melitus di RSUD Syekh Yusup Kab. Gowa. J Media Laboran. 2019;9(2):23–8.

Elhassaneen Y, Nasef A, Abo-Khazima A. Effect of coconut fruits and their milk on biological and biochemical changes of hypercholesterolemic rats. J Home Econ - Menofia Univ [Internet]. 2020 Jan 1;30(1):85–106. Available from: https://mkas.journals.ekb.eg/article_157712.html

Laguardia Valente Rocha L, Alves Cimini Azevedo F, Soares Luiz Silva W, Clemente de Abreu J, Spani Amado V, Augusto de Rezende B, et al. Coconut Oil Action On The Hepatic Function Of Rats Wistar Submitted To The Diet Hypercaloric. Int J Dev Res [Internet]. 2019;09(May):27291–6. Available from: http://www.journalijdr.com

Suckow MA, Hankenson FC, Wilson RP, Foley PL. The Laboratory Rat. London: Academic Press is an imprint of Elsevier; 2019.

Akbulut T. Responses of Uric Acid, Glucose, Thyroid Hormones and Liver Enzymes to Aerobic and Combined Exercises in University Students. High Educ Stud [Internet]. 2020 Jan 16;10(1):109. Available from: http://www.ccsenet.org/journal/index.php/hes/article/view/0/41827

Allameh A, Mehr RN, Aliarab A,Sebastiani G, Pantopoulos K. Oxidative Stress in Liver Pathophysiology and Disease. J Clin Invest [Internet]. 2023 Aug 22;12(9):1653.

Masenga SK, Kabwe LS, Chakulya M, Kirabo A. Mechanisms of oxidative stress in metabolic syndrome. Int. J. Mol. Sci. 2023;24(9):7898

Bhattacharjee J, Kirby M, Softic S, Miles L, Salazar‐Gonzalez R, Shivakumar P, et al. Hepatic natural killer T‐cell and CD8+ T‐cell signatures in mice with nonalcoholic steatohepatitis. Hepatol Commun [Internet]. 2017 Jun 16;1(4):299–310. Available from: https://journals.lww.com/02009842-201706000-00005

Wali JA, Jarzebska N, Raubenheimer D, Simpson SJ, Rodionov RN, O’Sullivan JF. Cardio-Metabolic Effects of High-Fat Diets and Their Underlying Mechanisms—A Narrative Review. Nutrients [Internet]. 2020 May 21;12(5):1505. Available from: https://www.mdpi.com/2072-6643/12/5/1505

Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature [Internet]. 2019 Dec 5;576(7785):51–60. Available from: https://www.nature.com/articles/s41586-019-1797-8

Benard O, Lim J, Apontes P, Jing X, Angeletti RH, Chi Y. Impact of high-fat diet on the proteome of mouse liver. J Nutr Biochem [Internet]. 2016 May;31:10–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S095528631600019X

Hu C, Li F, Duan Y, Yin Y, Kong X. Dietary Supplementation With Leucine or in Combination With Arginine Decreases Body Fat Weight and Alters Gut Microbiota Composition in Finishing Pigs. Front Microbiol [Internet]. 2019 Aug 13;10. Available from: https://www.frontiersin.org/article/10.3389/fmicb.2019.01767/full

Peiseler M and Tacke F. Inflammatory Mechanisms Underlying nonalcoholic steatohepatitis and the transition tohepatocellular carcinoma. Cancers 2021 13(4), 730

Marchesini G, Petta S, Dalle Grave R. Diet, weight loss, and liver health in nonalcoholic fatty liver disease: Pathophysiology, evidence, and practice. Hepatology [Internet]. 2016 Jun 22;63(6):2032–43. Available from: https://journals.lww.com/01515467-201606000-00035

Stefan N, Häring H-U, Cusi K. Non-alcoholic fatty liver disease: causes, diagnosis, cardiometabolic consequences, and treatment strategies. Lancet Diabetes Endocrinol [Internet]. 2019 Apr;7(4):313–24. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2213858718301542

Marchesini G, Day CP, Dufour J-F, Canbay A, Nobili V, Ratziu V, et al. EASL-EASD-EASO Clinical Practice Guidelines for the Management of Non-Alcoholic Fatty Liver Disease. Obes Facts [Internet]. 2016;9(2):65–90. Available from: https://www.karger.com/Article/FullText/443344

Smith J, Neupane R, McAmis W, Singh U, Chatterjee S, Raychoudhury S. Toxicity of polycyclic aromatic hydrocarbons involves NOX2 activation. Toxicol Reports [Internet]. 2019;6:1176–81. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2214750019301878

Li L, Wang L, Song R, Chen G, Liu Y. Cytochrome P450 2E1 increases the sensitivity of hepatoma cells to vitamin K2. Int J Oncol [Internet]. 2017 May;50(5):1832–8. Available from: https://www.spandidos-publications.com/10.3892/ijo.2017.3932

Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med [Internet]. 2018 Jul 2;24(7):908–22. Available from: https://www.nature.com/articles/s41591-018-0104-9

Kim Y-J, Oh S-H, Ahn J-S, Yook J-M, Kim C-D, Park S-H, et al. The Crucial Role of Xanthine Oxidase in CKD Progression Associated with Hypercholesterolemia. Int J Mol Sci [Internet]. 2020 Oct 9;21(20):7444. Available from: https://www.mdpi.com/1422-0067/21/20/7444

Wong HK, Choo QC, Chew CH. Coconut milk gavage enhanced fecal bile excretion by modulating hepatic Fxr expression but failed to improve fasting serum cholesterol profile in C57BL/6 mice. OCL [Internet]. 2020 Sep 28;27:50. Available from: https://www.ocl-journal.org/10.1051/ocl/2020037

Wu H, Zhang G, Huang L, Pang H, Zhang N, Chen Y, et al. Hepatoprotective Effect of Polyphenol-Enriched Fraction from Folium Microcos on Oxidative Stress and Apoptosis in Acetaminophen-Induced Liver Injury in Mice. Oxid Med Cell Longev [Internet]. 2017;2017:1–14. Available from: https://www.hindawi.com/journals/omcl/2017/3631565/

Ströher DJ, de Oliveira MF, Martinez-Oliveira P, Pilar BC, Cattelan MDP, Rodrigues E, et al. Virgin Coconut Oil Associated with High-Fat Diet Induces Metabolic Dysfunctions, Adipose Inflammation, and Hepatic Lipid Accumulation. J Med Food [Internet]. 2020 Jul 1;23(7):689–98. Available from: https://www.liebertpub.com/doi/10.1089/jmf.2019.0172

Świątkiewicz M, Hanczakowska E, Okoń K, Kowalczyk P, Grela ER. Effect of Maternal Diet and Medium Chain Fatty Acids Supplementation for Piglets on Their Digestive Tract Development, Structure, and Chyme Acidity as Well as Performance and Health Status. Animals [Internet]. 2020 May 11;10(5):834. Available from: https://www.mdpi.com/2076-2615/10/5/834

Jadhav HB, Annapure US. Triglycerides of medium-chain fatty acids: a concise review. J Food Sci Technol [Internet]. 2023 Aug 22;60(8):2143–52. Available from: https://link.springer.com/10.1007/s13197-022-05499-w

McCarty MF, DiNicolantonio JJ. Lauric acid-rich medium-chain triglycerides can substitute for other oils in cooking applications and may have limited pathogenicity. Open Hear [Internet]. 2016 Jul 27;3(2):e000467. Available from: https://openheart.bmj.com/lookup/doi/10.1136/openhrt-2016-000467

Schönfeld P, Wojtczak L. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J Lipid Res [Internet]. 2016 Jun;57(6):943–54. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022227520351737

Liu Y, Li H, Zhang X, Xu Q, Zhang Y, Xue C, et al. Medium-chain fatty acids decrease serum cholesterol via reduction of intestinal bile acid reabsorption in C57BL/6J mice. Nutr Metab (Lond) [Internet]. 2018 Dec 5;15(1):37. Available from: https://nutritionandmetabolism.biomedcentral.com/articles/10.1186/s12986-018-0267-x

Li L, Wang B, Yu P, Wen X, Gong D, Zeng Z. Medium and Long Chain Fatty Acids Differentially Modulate Apoptosis and Release of Inflammatory Cytokines in Human Liver Cells. J Food Sci [Internet]. 2016 Jun 3;81(6). Available from: https://ift.onlinelibrary.wiley.com/doi/10.1111/1750-3841.13321

Wang B, Li L, Fu J, Yu P, Gong D, Zeng C, et al. Effects of Long‐Chain and Medium‐Chain Fatty Acids on Apoptosis and Oxidative Stress in Human Liver Cells with Steatosis. J Food Sci [Internet]. 2016 Mar 22;81(3). Available from: https://ift.onlinelibrary.wiley.com/doi/10.1111/1750-3841.13210

Recio C, Lucy D, Purvis GSD, Iveson P, Zeboudj L, Iqbal AJ, et al. Activation of the Immune-Metabolic Receptor GPR84 Enhances Inflammation and Phagocytosis in Macrophages. Front Immunol [Internet]. 2018 Jun 20;9. Available from: https://www.frontiersin.org/article/10.3389/fimmu.2018.01419/full

Wu Y, Ren A, Lv X, Ran T, Zhang G, Zhou C, et al. Effects of Galactomannan Oligosaccharides on Growth Performance, Mycotoxin Detoxification, Serum Biochemistry, and Hematology of Goats Fed Mycotoxins-Contaminated Diets. Front Vet Sci [Internet]. 2022 Jun 24;9. Available from: https://www.frontiersin.org/articles/10.3389/fvets.2022.852251/full

Desty E, et al. Satiety and glycemic control after giving glucomannan-modified growol cookies. Indonesian Nutritional Dietetic Journals. 2024 Vol 12 (4)

Yamazaki T, Ihato M. Peroxisome Proliferator-Activated Receptor α Has a Protective Effect on Fatty Liver Caused by Excessive Sucrose Intake. Biomedicines [Internet]. 2022 Sep 6;10(9):2199. Available from: https://www.mdpi.com/2227-9059/10/9/2199

Chenxuan et al. Hepatoprotective Potential of Partially Hydrolyzed Guar Gum against Acute Alcohol-Induced Liver Injury in Vitro and Vivo. Nutrients. 2019 Apr 27;11(5):963. doi: 10.3390/nu11050963.




DOI: http://dx.doi.org/10.21927/ijnd.2025.13(5).324-334

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Nutrition and Dietetics (IJND) indexed by:

  


Lisensi Creative Commons View My Stats