Serum Copper levels in adolescents 17-19 years old based on stunted and obese status

Nadhea Alriessyanne Hindarta, M Sulchan, Hartanti Sandi, Nuryanto Nuryanto



Latar Belakang: Individu dengan status gizi stunted memiliki risiko mengalami obesitas saat remaja atau dewasa. Status stunted dan obesitas sering dikaitkan dengan kejadian inflamasi dan potensi stress oksidatif yang dapat ditandai dengan peningkatan kadar serum tembaga.

Tujuan: Penelitian ini bertujuan untuk menganalisis kadar serum tembaga pada remaja usia 17-19 tahun berdasarkan status stunted dan obesitas.

Metode: Penelitian ini menggunakan rancangan cross sectional. Sebanyak 91 subjek dipilih secara random sampling berdasarkan kriteria inklusi dan eksklusi. Status obesitas diukur menggunakan lingkar pinggang per tinggi (WHtR) dan status stunted diukur menggunakan tinggi badan per umur (TB/U). Pengukuran kadar serum tembaga dianalisis menggunakan teknik ICP-OES dengan nilai normal serum tembaga sebesar 0.7-1.4 mg/L. Analisis data meggunakan uji Anova, uji korelasi Pearson, dan uji T Independen.

Hasil: Rerata kadar serum tembaga pada kelompok stunted-obesitas sebesar 0,83±0,21, stunted 1,11±0,28, obesitas 0,72±0,17, dan normal 0,60±0,37. Terdapat perbedaan bermakna kadar serum tembaga kelompok stunted dengan kelompok lain. Kadar serum tembaga memiliki korelasi negatif dengan TB/U (r=-0,337, p=0,001).

Kesimpulan: Status stunted, obesitas, dan stunted-obesitas meningkatkan kadar serum tembaga meskipun masih dalam kategori normal. Ada perbedaan bermakna kadar serum tembaga berdasarkan status stunted dan obesitas, serta adanya korelasi negatif kadar serum tembaga dengan TB/U.

KATA KUNCIobesitas; remaja; serum tembaga; stunted, stunted-obesitas 


Background: Stunted have a risk of obesity in the adolescent or adult period. Stunted and obese status were associated with inflammation and oxidative stress that marked by increased serum copper levels.

Objectives: This study was to describe difference of serum copper levels in adolescents 17-19 years old based on stunted and obese status.

Methods: This study was using cross sectional design. There were 91 adolescents as the sample of this study and selected by random sampling based on inclusion and exclusion criterias. The obese status was measured by waist to height ratio (WHtR) and stunted status was measured by height age of z-score (HAZ). The serum copper levels were analyzed by ICP-OES with normal copper serum value of 0.7-1.4 mg/L. The data were analyzed by Anova test, Pearson correlation, and Independent t-test.

Results: The mean value of serum copper level in stunted-obese group were 0.83 ± 0.21, stunted group were 1.11 ± 0.28, obese group were 0.72 ± 0.17, and normal group were 0.60 ± 0.37. There was a significant difference of serum copper level between the stunted with other groups. There was a negative correlation between serum copper level and HAZ (r = -0.337, p = 0.001).

Conclusions: Stunted, obese, and stunted-obese status were able to increase serum copper level but still in normal range. A significant difference was found in serum copper levels based on stunted and obesity status, as well as a negative correlation between serum copper level and HAZ.

KEYWORD: adolescents; obese status; stunted status, stunted-obese, serum copper levels


obesitas; remaja; serum tembaga; stunted, stunted-obesitas; adolescents; obese status; stunted status, stunted-obese, serum copper levels

Full Text:



Symington EA, Gericke GJ, Nel JH, Labadarios D. The relationship between stunting and overweight among children from South Africa: Secondary analysis of the national food consumption survey - Fortification baseline I. South African Med J. 2016;106(1):65–9.

Rollet SR, Gray ES, Previl H, Forrester JE. Prevalence of malnutrition in children under five and school-age children in Milot Valley, Haiti. Public Health [Internet]. 2014;128(12):1094–8. Available from:

Rachmi CN, Agho KE, Li M, Baur LA. Are stunted young Indonesian children more likely to be overweight, thin, or have high blood pressure in adolescence? Int J Public Health. 2017;62(1):153–62.

Mukuddem-Petersen J, Salome Kruger H. Association between stunting and overweight among 10-15-y-old children in the North West Province of South Africa: The THUSA BANA Study. Int J Obes. 2004;28(7):842–51.

Sawaya AL, Roberts S. Stunting and future risk of obesity: principal physiological mechanisms. Cad Saude Publica. 2003;19(suppl 1):S21–8.

Vaag AA, Grunnet LG, Arora GP, Brøns C. The thrifty phenotype hypothesis revisited. Diabetologia. 2012;55(8):2085–8.

Bove I, Miranda T, Campoy C, Uauy R, Napol M. Stunting, overweight and child development impairment go hand in hand as key problems of early infancy: Uruguayan case. Early Hum Dev. 2012;88(9):747–51.

Ramos C V., Dumith SC, César JA. Prevalence and factors associated with stunting and excess weight in children aged 0-5 years from the Brazilian semi-arid region. J Pediatr (Rio J) [Internet]. 2015;91(2):175–82. Available from:

Matsuda M, Shimomura I. Increased oxidative stress in obesity: Implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract [Internet]. 2013;7(5):1–12. Available from:

Roh HT, Cho SY, So WY. Obesity promotes oxidative stress and exacerbates blood-brain barrier disruption after high-intensity exercise. J Sport Heal Sci [Internet]. 2017;6(2):225–30. Available from:

Jones DA, Prior SL, Barry JD, Caplin S, Baxter JN, Stephens JW. Changes in markers of oxidative stress and DNA damage in human visceral adipose tissue from subjects with obesity and type 2 diabetes. Diabetes Res Clin Pract [Internet]. 2014;106(3):627–33. Available from:

Lichtenberg D, Pinchuk I. Oxidative stress, the term and the concept. Biochem Biophys Res Commun [Internet]. 2015;461(3):441–4. Available from:

Li H, Horke S, Förstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis [Internet]. 2014;237(1):208–19. Available from:

Ahinkorah BO, Amadu I, Seidu AA, Okyere J, Duku E, Hagan JE, et al. Prevalence and factors associated with the triple burden of malnutrition among mother-child pairs in sub-saharan africa. Nutrients. 2021;13(6):1–13.

Habib SA, Saad EA, Elsharkawy AA, Attia ZR. Pro-inflammatory adipocytokines, oxidative stress, insulin, Zn and Cu: Interrelations with obesity in Egyptian non-diabetic obese children and adolescents. Adv Med Sci [Internet]. 2015;60(2):179–85. Available from:

Erdemir F, Atilgan D, Markoc F, Boztepe O, Suha-Parlaktas B, Sahin S. Efecto de la obesidad inducida por dieta en el tejido testicular y parámetros de estrés oxidativo en el suero. Actas Urol Esp [Internet]. 2012;36(3):153–9. Available from:

Ozturk P, Belge Kurutas E, Ataseven A. Copper/zinc and copper/selenium ratios, and oxidative stress as biochemical markers in recurrent aphthous stomatitis. J Trace Elem Med Biol [Internet]. 2013;27(4):312–6. Available from:

Konukoǧlu D, Serin Ö, Ercan M, Turhan MS. Plasma homocysteine levels in obese and non-obese subjects with or without hypertension; its relationship with oxidative stress and copper. Clin Biochem. 2003;36(5):405–8.

Kazemi-Bajestani SMR, Ghayour-Mobarhan M, Ebrahimi M, Moohebati M, Esmaeili HA, Parizadeh MR, et al. Serum copper and zinc concentrations are lower in Iranian patients with angiographically defined coronary artery disease than in subjects with a normal angiogram. J Trace Elem Med Biol. 2007;21(1):22–8.

Srivastava S, Singh D, Patel S, Singh MR. Role of enzymatic free radical scavengers in management of oxidative stress in autoimmune disorders. Int J Biol Macromol [Internet]. 2017;101:502–17. Available from:

Siti HN, Kamisah Y, Kamsiah J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul Pharmacol [Internet]. 2015;71:40–56. Available from:

Dumith SC, Gigante DP, Domingues MR, Kohl HW. Physical activity change during adolescence: A systematic review and a pooled analysis. Int J Epidemiol. 2011;40(3):685–98.

Feeley A, Musenge E, Pettifor JM, Norris SA. Changes in dietary habits and eating practices in adolescents living in urban South Africa: The birth to twenty cohort. Nutrition [Internet]. 2012;28(7–8):e1–6. Available from:

Bénéfice E, Garnier D, Simondon KB, Malina RM. Relationship between stunting in infancy and growth and fat distribution during adolescence in Senegalese girls. Eur J Clin Nutr. 2001;55(1):50–8.

Prendergast AJ, Rukobo S, Chasekwa B, Mutasa K, Ntozini R, Mbuya MNN, et al. Stunting is characterized by chronic inflammation in zimbabwean infants. PLoS One. 2014;9(2).

Obeid O, Elfakhani M, Hlais S, Iskandar M, Batal M, Mouneimne Y, et al. Plasma copper, zinc, and selenium levels and correlates with metabolic syndrome components of lebanese adults. Biol Trace Elem Res. 2008;123(1–3):58–65.

Fonseca DC, Sala P, de Azevedo Muner Ferreira B, Reis J, Torrinhas RS, Bendavid I, et al. Body weight control and energy expenditure. Clin Nutr Exp [Internet]. 2018;20:55–9. Available from:

Catalania S, Paganelli M, Gilberti ME, Rozzini L, Lanfranchi F, Padovani A, et al. Free copper in serum: An analytical challenge and its possible applications. J Trace Elem Med Biol. 2018;45:176–80.

Khanam R, Nghiem HS, Rahman MM. The impact of childhood malnutrition on schooling: Evidence from Bangladesh. J Biosoc Sci. 2011;43(4):437–51.

Michos C, Kalfakakou V, Karkabounas S, Kiortsis D, Evangelou A. Changes in copper and zinc plasma concentrations during the normal menstrual cycle in women. Gynecol Endocrinol. 2010;26(4):250–5.

Ivanova I, Atanasova B, Kostadinova A, Bocheva Y, Tzatchev K. Serum Copper and Zinc in a Representative Sample of Bulgarian Population. Acta Medica Bulg. 2016;43(2):21–31.

Ghayour-Mobarhan M, Taylor A, New SA, Lamb DJ, Ferns GAA. Determinants of serum copper, zinc and selenium in healthy subjects. Ann Clin Biochem. 2005;42(5):364–75.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Nutrition and Dietetics (IJND) indexed by:


Lisensi Creative Commons View My Stats