Reduction of free radicals in hyperglycemic conditions through the administration of lime peel extract (Citrus aurantifolia swingle)
Abstract
ABSTRAK
Latar Belakang: Kondisi hiperglikemia tidak selalu terjadi pada penderita diabetes. Stress oksidatif merupakan salah satu proses pathogenesis yang ditimbulkan terhadap penyakit akibat hiperglikemia. Hal tersebut berkaitan dengan peningkatan Reactive Oxygen Species (ROS) dan penurunan aktivitas antioksidan. Pemberian asupan antioksidan dari luar tubuh diharapkan dapat membantu menetralisir radikal bebas yang berlebihan.
Tujuan: Untuk mengetahui efektivitas ektrak kulit jeruk nipis terhadap pernurunan radikal bebas pada kondisi hiperglikemia.
Metode: Penelitian ini merupakan eksperimental dengan post-test control group design dengan menggunakan tikus wistar di laboratorium Fakultas Kedkteran, Universitas Surabaya. Kondisi hiperglikemia pada hewan coba dilakukan melalui induksi aloksan dan selanjutnya diberikan ekstrak kulit jeruk nipis (2,35 mg; 4,7 mg; 9,4 mg) selama 30 hari dengan membagi menjadi 5 kelompok perlakukan. Parameter untuk mengetahui kadar radikal bebas pada penelitian ini adalah kadar malondialdehid.
Hasil: Pada penelitian memperlihatkan bahwa pada kelompok yang diberikan ektrak kulit jeruk nipis akan mengalami penurunan kadar malondialdehid jika dibandingkan dengan kelompok lainnya (p<0,05). Hasil rerata kadar malondialdehid terendah pada dosis 9,4 mg (1,67±0,10).
Kesimpulan: Pemberian ekstrak kulit jeruk nipis dapat menurunkan kadar malondialdehid pada kondisi hiperglikemia.
KATA KUNCI: Citrus aurantifolia; hiperglikemia; malodialdehid; radikal bebas
ABSTRACT
Background: Hyperglycemia condition does not always occur in diabetes. Oxidative stress is a process of pathogenesis diseases as a result of hyperglycemia. This is associated with increased Reactive Oxygen Species (ROS) and decreased antioxidant activity. Antioxidants intakes outside the body is expected to neutralize excessive free radicals.
Objectives: To determine the effectiveness of lime peel extract against free radicals induced by hyperglycemia.
Methods: This research is an experimental post-test control group design using wistar rats in the laboratory of the Faculty of Medicine, University of Surabaya. Hyperglycemia conditions in experimental animals were carried out through alloxan induction and then given lime peel extract (2,35 mg; 4,7 mg; 9,4 mg) for 30 days by dividing into 5 treatment groups. The parameter to determine the levels of free radicals in this study is the levels of malondialdehyde
Results: Showed that the group given lime peel extract experienced a decrease in malondialdehyde levels when compared to the other groups (p<0.05). The lowest mean malondialdehyde level was at a dose of 9.4mg (1.67±0.10).
Conclusion: The administration of lime peel extract can reduce levels of Malondialdehyde induced by hyperglycemia.
KEYWORDS: Citrus aurantifolia; free radicals; hyperglycemia; malondialdehyde
Keywords
Full Text:
PDFReferences
Lee PG, Halter JB. The Pathophysiology of Hyperglycemia in Older Adults: Clinical Considerations. Diabetes Care. 2017;40:444–452.
Abdelaziz OM, Elhassan MAY, Magzoob M, Siddig AAM, Handady MO, Alawad MAA. Prevalence and Risk Factors of Hyperglycemia among Diabetic and Non-Diabetic Rural Population in North Sudan. Austin Med. Sci. 2018;3(4):1031.
Ali I, Abuissa M, Alawneh A, Subeh O, Sneineh AA, Mousa S, Deeb I, Rayyan H. The Prevalence of Dyslipidemia and Hyperglycemia among Stroke Patients: Preliminary Findings. Stroke Res. Treat. 2019;1–6.
Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dustan DW, Horton ES, Tate DF. Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care. 2016;39:2065–2079.
Sami W, Ansari T, Butt NS, Hamid MRA. Effect of diet on type 2 diabetes mellitus: A review. Int. J. Health Sci. (Qassim). 2017;11:65–71.
Suryadinata RV, Wirjatmadi B, Adriani M, Sumarmi S. The Effects of Exposure Duration to Electronic Cigarette Smoke on Differences in Superoxide Dismutase and Malondialdehyde in Blood of Wistar Rats. Int. J. Curr. Pharm. Res. 2019;11:13–16.
Yaribeygi H, Sathyapalan T, Atkin SL, Sahebkar A. Molecular Mechanisms Linking Oxidative Stress and Diabetes Mellitus. Oxid. Med. Cell. Longev. 2020;1–13.
Ayepola OR, Brooks NL, Oguntibeju OO. Oxidative Stress and Diabetic Complications: The Role of Antioxidant Vitamins and Flavonoids. in Antioxidant-Antidiabetic Agents and Human Health. 2013. doi:10.5772/57282
Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress—A concise review. Saudi Pharm. J. 2016;24:547–553.
Suryadinata RV, Wirjatmadi B, Adriani M. Pengaruh Perubahan Hiperplasia Sel Goblet Selama 28 Hari Paparan Asap Rokok Dengan Pemberian Antioksidan Superoxide Dismutase. Indones. J. Public Heal. 2016;11: 60.
Suryadinata RV, Wirjatmadi B, Adriani M. Efektivitas Penurunan Malondialdehyde dengan Kombinasi Suplemen Antioksidan Superoxide Dismutase Melon dan Gliadin Akibat Paparan Rokok. Glob. Med. Helath Commun. 2017;5:79–83.
Suryadinata RV, Wirjatmadi B. The Role of Selenium Micronutrients as Antioxidants in Exposure to E-Cigarette Smoke. Asian J. Pharm. Clin. Res. 2019;12:265–268.
Cerf ME. Beta cell dysfunction and insulin resistance. Front Endocrinol (Lausanne). 2013;4:37.
Park S and Park SY. Can antioxidants be effective therapeutics for type 2 diabetes?. Yeungnam Univ J Med. 2021; 38(2): 83–94.
Satapati S, Kucejova B, Duarte JA, Fletcher JA, Reynolds L, Sunny NE, et al. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. J Clin Invest. 2015;125:4447–62
Indraswari PII, Lorensia A, Suryadinata RV. Analysis Effect of Nutrition Intake on Lung Function of Active Smoker and Non Smoker. J. Kesehat. Masy. 2018;14:247–253.
Ruiz-Torralba A, Guerra-Hernández EJ, García-Villanova B. Antioxidant capacity, polyphenol content and contribution to dietary intake of 52 fruits sold in Spain. CyTA - J. Food. 2018;16:1131–1138.
Suryadinata RV, Lorensia A, Sefania K. Effectiveness of Lime Peel Extract (Citrus aurantifolia Swingle) against C-Reactive Protein Levels in Alloxan-Induced Wistar Rats. Global Medical and Health Communication. 2021;9(1):23-28.
Suryadinata RV and Wirjatmadi B. Selenium Linked to Increased Antioxidant Levels and Decreased Free Radicals in Lung Tissue of Wistar Rats Exposed to E-Cigarette Smoke. Journal of Global Pharma Technology. 2020; 12(9):32-39
Suryadinata RV, Priskila O, Wicaksono Y. Analisis Data Kesehatan Statistika Dasar Dan Korelasi (Jilid 1). 2021.
Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014;383:1068–1083.
Yan LJ. Pathogenesis of Chronic Hyperglycemia: From Reductive Stress to Oxidative Stress. J. Diabetes Res. 2014;1–11.
Sardu C, Pieretti G, D'Onofrio N. et al., “Inflammatory cytokines and SIRT1 levels in subcutaneous abdominal fat: relationship with cardiac performance in overweight pre-diabetics patients,” Frontiers in Physiology. 2018;9:1-12.
Monnier L, Colette C. and D. Owens, “The glycemic triumvirate and diabetic complications: is the whole greater than the sum of its component parts?” Diabetes Research and Clinical Practice. 2012;95(3):pp.303–311.
Papachristoforou E, Lambadiari V, Maratou E, Makrilakis K. Association of Glycemic Indices (Hyperglycemia, Glucose Variability, and Hypoglycemia) with Oxidative Stress and Diabetic Complications. Journal of Diabetes Research. 2020; 1-7
Kalio IS, Davis T. Antioxidants and Oxidative Stress in Diabetes. Pharm. Chem. J. 2018;5:55–60.
Suryadinata RV, Lorensia A, Sari RK. Differences in Nutrition Food Intake and Body Mass Index between Smoker and Non-smoker in Adult. Indones. J. Clin. Pharm. 2017;6:171–180.
DOI: http://dx.doi.org/10.21927/ijnd.2021.9(3).139-144
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Nutrition and Dietetics (IJND) indexed by:
View My Stats