ANALISA PERFORMA ARSITEKTUR MOBILENETV1 DAN RESNET MENGGUNAKAN META-LEARNING DALAM MENDETEKSI OBJEK HEWAN KUCING
Abstract
Keywords
Full Text:
PDF (Indonesian)References
E. Wijaya, “Analisis Penggunaan Algoritma Breadth First Search Dalam Konsep Artificial Intellegencia,” Time, vol. II, no. 2, pp. 18–26, 2013.
A. P. Mahardika, “Sistem Pakar Mendeteksi Penyakit Dalam dengan Metode Backward Chaining Menggunakan Visual Basic 2010,” pp. 23–34, 2010.
A. Syaikhoni & A. Ariyadi, “Deteksi Objek Dengan Tensorflow Object Detection Api,” Binus, 2016. https://mti.binus.ac.id/2018/12/26/deteksi-objek-dengan-tensorflow-object-detection-api/.
J. Deng, X. Li, and Y. Fang, “Few-shot Object Detection on Remote Sensing Images,” arXiv, pp. 1–12, 2020.
A. Wibowo, “10 Fold-Cross Validation,” 2017,https://mti.binus.ac.id/2017/11/24/10-fold-cross-validation/ (accessed Jul. 29, 2019).
K. Zhang, M. Sun, T. X. Han, X. Yuan, L. Guo, and T. Liu, “Residual Networks of Residual Networks: Multilevel Residual Networks,” IEEE Trans. Circuits Syst. Video Technol., vol. 28, no. 6, pp. 1303–1314, 2018, doi: 10.1109/TCSVT.2017.2654543.
P. R. Aningtiyas, A. Sumin, and S. Wirawan, “Pembuatan Aplikasi Deteksi Objek Menggunakan TensorFlow Object Detection API dengan Memanfaatkan SSD MobileNet V2 Sebagai Model Pra - Terlatih,” J. Ilm. Komputasi, vol. 19, no. 3, pp. 421–430, 2020, doi: 10.32409/jikstik.19.3.68.
F. E. Ramadhan, “Penerapan Image Classification Dengan Pre-Trained Model Mobilenet Dalam Client-Side Machine Learning,” 2020.
F. G. Mohammadi, M. H. Amini, and H. R. Arabnia, “An Introduction to Advanced Machine Learning : Meta Learning Algorithms, Applications and Promises,” Adv. Intell. Syst. Comput., vol. 1123, pp. 129–144, 2020, doi: 10.1007/978-3-030-34094-0_6.
M. J. Garbade, “Understanding few-shot learning in machine learning,” Medium, vol. 28, no. 2. pp. 1–43, 2018, [Online]. Available: https://medium.com/quick-code/understanding-few-shot-learning-in-machine-learning-bede251a0f67.
P. Chyan, “Penerapan Image Enhancement Algorithm Untuk Meningkatkan Kualitas Citra Tak Bergerak,” Maj. Ilm. INTI, vol. 12, no. 2, pp. 278–281, 2017.
E. M. Learners, “Mengenal Machine Learning,” Medium.Com. 2019, [Online].Available:https://medium.com/evolve-machine-learners/mengenal-machine-learning-6c4a48db48b0.
T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, “Meta-Learning in Neural Networks : A Survey,” pp. 1–20, 2020.
M. A. Pangestu and H. Bunyamin, “Analisis Performa dan Pengembangan Sistem Deteksi Ras Anjing pada Gambar dengan Menggunakan Pre-Trained CNN Model,” J. Tek. Inform. dan Sist. Inf., vol. 4, no. 2, pp. 337–344, 2018.
“Mengenal Google Colab - Structilmy.” [Online].Available:https://structilmy.com/2019/05/mengenal-google-colab/.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 770–778, 2016, doi: 10.1109/CVPR.2016.90.
Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few examples: A survey on few-shot learning,” arXiv, vol. 1, no. 1, pp. 1–34, 2019.
T. Lin, C. L. Zitnick, and P. Doll, “Microsoft COCO : Common Objects in Context,” pp. 1–15.
T. Beysolow, Applied Natural Language Processing with Python Learning and Deep Learning Language Processing. 2018.
DOI: http://dx.doi.org/10.21927/ijubi.v4i1.1686
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Indonesian Journal of Business Intelligence (IJUBI)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
IJUBI by https://ejournal.almaata.ac.id/index.php/IJUBI is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats
Indonesian Journal of Business Intelligence (IJUBI)
Department of Information System
Alma Ata University
Email: ijubi@almaata.ac.id