PERANCANGAN SISTEM PAKAR DIAGNOSA PENYAKIT GIGI MENGGUNAKAN ALGORITMA BAYES

Sri Ngudi Wahyuni, Lila Garjita

Abstract


Dental disease is a health problem in Indonesia, many people complain about
it. In 2013 Indonesia's basic health research that 25.9% of Indonesia's
population had dental and mouth problems. The public awareness to maintain
dental and oral health is still low at around 13.1%. In addition, there is a lack
of a number of dentists, causing the high cost of dental examinations. The
expert system of Dental Disease Diagnosis System is a solution which can to
detect symptoms of dental disease early before go to doctors.The Bayes
algorithm is one of methods which efisien to use in expert system for
developing it. The bayes algorithm is accurate to diagnose early dental
diseases, by entering a diagnosis - an alternative probability value of the
disease and symptoms obtained from an expert.

Keywords


Expert System; Disease; Dental; Diagnosis; Bayes

Full Text:

PDF

References


Kemenkes RI.” Profil Kesehatan Indonesia Tahun 2013”, Jakarta: Kemenkes RI. 2014., http://www.depkes.go.id/resources/download/pusdatin/profil-kesehatan- indonesia/profil-kesehatan-indonesia- 2013.pdf, akses online tanggal 10 Mei 2018.

Xav. 2016. Perawatan gigi mahal hanya mitos. [Online]. Available: (www.pressreader.com/indonesia/jawa-pos/20161125/282754881302865, diakses tanggal 10 Mei 2018). Surabaya : Jawa Pos

A. M. Puspitasari, D.E. Ratnawati, A.W.Widodo, “Klasifikasi Penyakit Gigi Dan Mulut Menggunakan Metode Support Vector Machine”, Jurnal PengembanganTeknologi Informasi dan Ilmu Komputer, e-ISSN: 2548-964X, Vol. 2, No. 2, Februari 2018, hlm. 802-810, 2018

H. T. Sihotang, “Perancangan Aplikasi Sistem Pakar Diagnosa Diabetes Dengan Metode Bayes”, Jurnal Mantik Penusa, Volume 1 No. 1 Juli, e-ISSN 2580-9741, 2017.

P.S. Ramadhan, “Sistem Pakar Pendiagnosaan Dermatitis Imun Menggunakan Teorema Bayes”, Jurnal Informatika dan Teknologi Jaringan, ISSN 240-7600, Vol 3, No 1, September 2018

S.N. Wahyuni, D. A. Wijaya, “Penerapan Dan Optimasi Riset KeyworddenganTeknik Allintitllepada Mesin Pencari Google” Jurnal Mantik Penusa Vol. 2, No. 2 Desember pp.40-44. 2018




DOI: http://dx.doi.org/10.21927/ijubi.v2i1.1020

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Indonesian Journal of Business Intelligence (IJUBI)

Lisensi Creative Commons
IJUBI by https://ejournal.almaata.ac.id/index.php/IJUBI is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

View My Stats
Indonesian Journal of Business Intelligence (IJUBI)
Department of Information System
Alma Ata University
Email: ijubi@almaata.ac.id