PREDIKSI DAN EVALUASI POTENSI KEUNTUNGAN SAHAM PERBANKAN HIMBARA MENGGUNAKAN METODE LSTM
DOI:
https://doi.org/10.21927/ijubi.v8i1.4415Keywords:
Harga Saham, Investasi Perbankan, LSTM, Prediksi Harga, Pembelajaran Mesin.Abstract
Penelitian ini mengkaji prediksi harga saham dan analisis potensi untung dan rugi dari investasi saham di sektor perbankan khususnya pada bank negara BBNI, BBTN, BBRI dan BMRI. Prediksi menggunakan teknik pembelajaran mesin, dengan metode Long Short-Term Memory (LSTM). Model yang dibangun dan dilatih menggunakan optimizer adam, batch size 32 dan jumlah epoch 200. Model dilatih dan dikembangkan menggunakan data harga penutupan saham selama tiga tahun terakhir. Hasil dari prediksi model ditujukan untuk periode 30 hari ke depan, sehingga mampu memberikan informasi yang berharga bagi pelaku pasar saham untuk melakukan aksi jual atau beli. Evaluasi LSTM dalam memodelkan data menunjukkan tingkat akurasi (R 2 ) antara 0.9522 hingga 0.9712, dengan Mean Square Error (MSE) berkisar antara 796.55 hingga 15508.82 , Mean Absolute Error (MAE) antara 20.48 hingga 73-74 dan Root Mean Squared Error (RMSE) antara 28.22-124.53 , hasil evaluasi menunjukkan LSTM yang dibangun terbukti akurat dalam memprediksi harga saham.
References
Yanti NE. Analisis Risiko Investasi dan Optimalisasi Portofolio Saham LQ45 dengan Metode Value At Risk. J Ilm Mhs FEB. 2018 Jun;6(2).
Seventeen WL, Shinta SD. Pengaruh Economic Value Added dan return On Equity (ROE) Terhadap Harga Saham pada perusahaan Investasi yang Terdaftar Di BEI Tahun 2016-2019. JAZJurnal Akunt Unihaz. 2021;4(1):138.
Kustina L, Safitri O, Anwar S. Kebijakan Deviden Dan Capital Gain: Pengaruhnya Terhadap Harga Saham. J Investasi. 2019;5(1):24–37.
Rakha Adicandra, Eni Indriani, Yusli Mariadi. Analisis Tingkat Pengembalian Dan Risiko Investasi (Studi Pada Industri Food and Beverages Yang Terdaftar Di Bursa Efek Indonesia Periode 2017-2019). J Ris Mhs Akunt. 2022;2(2):225–34.
Iasa Nur Firdausi, Lia Nirawati. Dampak Adanya Influencer Investor Serta Perilaku Fear Of Missing Out (FOMO) Terhadap Keputusan Pembelian Saham Di Indonesia. Masip J Manaj Adm Bisnis dan Publik Terap. 2023;1(3):190–6.
Saputra MR, Saepudin D. Optimasi Portofolio Berbasis Prediksi Return Saham Menggunakan Hybrid XGBoost dan Improved Firefly Algorithm untuk Saham–Saham dalam Indeks LQ45. eProceedings …. 2023;10(3):3505–14.
Nagar N, Jatav PK, Gupta M, Limone A. Performance Comparison of LSTM and SVR Models in Predicting Stock Prices. J Harbin Eng Univ. 2023;44(7):1–5.
Spyrou ED, Tsoulos I, Stylios C. Applying and Comparing LSTM and ARIMA to Predict CO Levels for a Time-Series Measurements in a Port Area. Signals [Internet]. 2022;235–48. Available from: https://doi.org/10.3390/signals3020015
Lindemann B, Müller T, Vietz H, Jazdi N, Weyrich M. A survey on long short-term memory networks for time series prediction. Procedia CIRP [Internet]. 2021;99(July 2020):650–5. Available from: https://doi.org/10.1016/j.procir.2021.03.088
Chollet F. Deep Learning with Python Second Edition. Manning Publications Co.; 2021.
Chicco D, Warrens MJ, Jurman G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput Sci. 2021;7:1–24.
Prasetyo VR, Mercifia M, Averina A, Sunyoto L, Budiarjo B. Prediksi Rating Film Pada Website Imdb Menggunakan Metode Neural Network. Netw Eng Res Oper. 2022;7(1):1.
Handayani A, Nurulrahmatia N. Analisis Rasio Keuangan dalam Memprediksi Pertumbuhan Laba pada PT. Aneka Tambang Tbk. J Ilmu Manaj. 2020;10(2):18–27.
Made Wahyuliantini N. Pengaruh Harga Saham, Volume Perdagangan Saham, Dan Volatilitas Return Saham Pada Bid-Ask Spread.
Wijaya AR. Model Prediksi Data Harga Minyak Mentah Dunia Dengan Metode Exponential Smoothing. Bul Ilm Math Stat dan Ter. 2023;12(1):21–8.
Handika H, Damajanti A, Rosyati R. Faktor Penentu Fluktuasi Pergerakan Indeks Harga Saham Gabungan (Ihsg) Di Bursa Efek Indonesia (Bei). Solusi. 2021;19(3):153.
Downloads
Published
Issue
Section
License
COPYRIGHT TRANSFER FORM
The copyright to this article is transferred to Alma Ata University Press if and when the article is accepted for publication. The undersigned hereby transfers any and all rights in and to the paper including without limitation all copyrights to AAU Press. The undersigned hereby represents and warrants that the paper is original and that he/she is the author of the paper, except for material that is clearly identified as to its original source, with permission notices from the copyright owners where required. The undersigned represents that he/she has the power and authority to make and execute this assignment.
We declare that:
1. This paper has not been published in the same form elsewhere.
2. It will not be submitted anywhere else for publication prior to acceptance/rejection by this Journal.
3. A copyright permission is obtained for materials published elsewhere and which require this permission for reproduction.
Furthermore, I/We hereby transfer the unlimited rights of publication of the above mentioned paper in whole to AAU Press. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, microform, electronic form (offline, online) or any other reproductions of similar nature.
The corresponding author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors. This agreement is to be signed by at least one of the authors who have obtained the assent of the co-author(s) where applicable. After submission of this agreement signed by the corresponding author, changes of authorship or in the order of the authors listed will not be accepted.
Retained Rights/Terms and Conditions
Â
1. Authors retain all proprietary rights in any process, procedure, or article of manufacture described in the Work.
2. Authors may reproduce or authorize others to reproduce the Work or derivative works for the authors personal use or for company use, provided that the source and the AAU Press copyright notice are indicated, the copies are not used in any way that implies AAU Press endorsement of a product or service of any employer, and the copies themselves are not offered for sale.
3. Although authors are permitted to re-use all or portions of the Work in other works, this does not include granting third-party requests for reprinting, republishing, or other types of re-use.