ANALISIS MODEL SISTEM REKOMENDASI KURSUS MOOC DENGAN METODE COLLABORATIVE FILTERING DAN INTEGRASI EXPLAINABLE AI

Nabila Muthia Putri, Mugi Praseptiawan, Meida Cahyo Untoro

Abstract


Sistem rekomendasi kursus Massive Open Online Course (MOOC) berperan penting dalam mendukung pembelajaran daring dengan memberikan saran kursus yang sesuai dengan preferensi pengguna. Dalam penelitian ini, kami mengembangkan model sistem rekomendasi kursus MOOC berbasis Collaborative Filtering dengan memanfaatkan dataset Coursera yang telah diproses. Preprocessing meliputi pembersihan data, penghapusan label yang tidak diperlukan, alokasi label, penghapusan data duplikat, dan analisis sentimen untuk memastikan konsistensi antara ulasan dan penilaian. Implementasi Collaborative Filtering melibatkan pembuatan tabel pivot, perhitungan Centered Cosine Similarity, dan prediksi penilaian kursus untuk pengguna yang belum pernah mengambil kursus tertentu. Evaluasi kinerja model dilakukan menggunakan metrik Root Mean Squared Error (RMSE) untuk mengukur tingkat kesalahan prediksi model. Hasil analisis dan evaluasi menunjukkan bahwa model yang dikembangkan berhasil memberikan rekomendasi kursus dengan tingkat kesalahan yang rendah, seperti yang tercermin dari nilai RMSE yang diperoleh yaitu 0.24 untuk sistem rekomendasi kursus MOOC. Integrasi Explainable AI dengan teknik LIME juga membantu dalam menjelaskan dan memahami rekomendasi yang diberikan oleh sistem, meningkatkan penjelasan tambahan terhadap model yang dibuat. Saran untuk pengembangan lebih lanjut termasuk fokus pada peningkatan interpretabilitas model dengan memperdalam integrasi Explainable AI, menggunakan dataset yang lebih besar, serta diversifikasi teknik pemodelan untuk meningkatkan kualitas dan akurasi rekomendasi yang diberikan oleh sistem.

Keywords


MOOC; Sistem rekomendasi; Collaborative Filtering; Explainable AI

Full Text:

PDF (Indonesian)

References


S. Al Shaqsi and R. T. Syed, “Massive open online courses and entrepreneurship education in higher education institutions,” in Technology and Entrepreneurship Education: Adopting Creative Digital Approaches to Learning and Teaching, 2022. doi: 10.1007/978-3-030-84292-5_8.

S. Rizvi, B. Rienties, J. Rogaten, and R. F. Kizilcec, “Beyond one-size-fits-all in MOOCs: Variation in learning design and persistence of learners in different cultural and socioeconomic contexts,” Comput Human Behav, vol. 126, 2022, doi: 10.1016/j.chb.2021.106973.

S. Bansal and N. Baliyan, “A study of recent recommender system techniques,” International Journal of Knowledge and Systems Science, vol. 10, no. 2, 2019, doi: 10.4018/IJKSS.2019040102.

R. Duan, C. Jiang, and H. K. Jain, “Combining review-based collaborative filtering and matrix factorization: A solution to rating’s sparsity problem,” Decis Support Syst, vol. 156, 2022, doi: 10.1016/j.dss.2022.113748.

A. Beheshti, S. Yakhchi, S. Mousaeirad, S. M. Ghafari, S. R. Goluguri, and M. A. Edrisi, “Towards cognitive recommender systems,” Algorithms, vol. 13, no. 8, 2020, doi: 10.3390/A13080176.

J. Bharadiya and J. P. Bharadiya, “Machine Learning and AI in Business Intelligence: Trends and Opportunities,” International Journal of Computer (IJC) International Journal of Computer, vol. 48, no. 1, 2023.

Z. Li, H. Zhao, Q. Liu, Z. Huang, T. Mei, and E. Chen, “Learning from History and Present: Next-item Recommendation via Discriminatively Exploiting User Behaviors,” 2018, doi: 10.1145/3219819.3220014.

S. M. Al-Ghuribi and S. A. Mohd Noah, “Multi-Criteria Review-Based Recommender System-The State of the Art,” IEEE Access, vol. 7. 2019. doi: 10.1109/ACCESS.2019.2954861.

M. Á. García-Cumbreras, A. Montejo-Ráez, and M. C. Díaz-Galiano, “Pessimists and optimists: Improving collaborative filtering through sentiment analysis,” Expert Syst Appl, vol. 40, no. 17, 2013, doi: 10.1016/j.eswa.2013.06.049.

W. Zhang, G. Ding, L. Chen, C. Li, and C. Zhang, “Generating virtual ratings from chinese reviews to augment online recommendations,” ACM Trans Intell Syst Technol, vol. 4, no. 1, 2013, doi: 10.1145/2414425.2414434.

S. Li et al., “Quantification and prediction of engagement: Applied to personalized course recommendation to reduce dropout in MOOCs,” Inf Process Manag, vol. 61, no. 1, Jan. 2024, doi: 10.1016/j.ipm.2023.103536.

J. Chen, X. Wang, S. Zhao, F. Qian, and Y. Zhang, “Deep attention user-based collaborative filtering for recommendation,” Neurocomputing, vol. 383, 2020, doi: 10.1016/j.neucom.2019.09.050.

Z. Cui et al., “Personalized Recommendation System Based on Collaborative Filtering for IoT Scenarios,” IEEE Trans Serv Comput, vol. 13, no. 4, 2020, doi: 10.1109/TSC.2020.2964552.

L. Longo, R. Goebel, F. Lecue, P. Kieseberg, and A. Holzinger, “Explainable Artificial Intelligence: Concepts, Applications, Research Challenges and Visions,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2020. doi: 10.1007/978-3-030-57321-8_1.

J. P. Gonzalo, A. Muñoz, S. Roque, J. Portela, and G. Madrid, “EXPLAINABLE ARTIFICIAL INTELLIGENCE (XAI) TECHNIQUES BASED ON PARTIAL DERIVATIVES WITH APPLICATIONS TO NEURAL NETWORKS,” 2023.

G. Srivastava et al., “XAI for Cybersecurity: State of the Art, Challenges, Open Issues and Future Directions,” ACM Comput. Surv, vol. 1, no. 1, 2022, doi: 10.1145/1122445.1122456.

E. J. Chia and M. K. Najafabadi, “Solving Cold Start Problem for Recommendation System Using Content-Based Filtering,” in Proceedings - 2022 International Conference on Computer Technologies, ICCTech 2022, 2022. doi: 10.1109/ICCTech55650.2022.00015.

A. M. Ridwan, D. R. Ramdania, D. S. A. Maylawati, A. Wahana, E. Mulyana, and M. I. Al-Amin, “Leather Product Recommendation System using Collaborative Filtering Algorithm,” in Proceeding of 2022 8th International Conference on Wireless and Telematics, ICWT 2022, 2022. doi: 10.1109/ICWT55831.2022.9935395.

R. Bharti and D. Gupta, “Recommending Top N Movies Using Content-Based Filtering and Collaborative Filtering with Hadoop and Hive Framework,” in Advances in Intelligent Systems and Computing, vol. 740, 2019. doi: 10.1007/978-981-13-1280-9_10.

D. Shin, “How do users interact with algorithm recommender systems? The interaction of users, algorithms, and performance,” Comput Human Behav, vol. 109, 2020, doi: 10.1016/j.chb.2020.106344.

I. Karabila, N. Darraz, A. El-Ansari, N. Alami, and M. El Mallahi, “Enhancing Collaborative Filtering-Based Recommender System Using Sentiment Analysis,” Future Internet, vol. 15, no. 7, 2023, doi: 10.3390/fi15070235.

A. Da’u and N. Salim, “Recommendation system based on deep learning methods: a systematic review and new directions,” Artif Intell Rev, vol. 53, no. 4, 2020, doi: 10.1007/s10462-019-09744-1.

G. Shani and A. Gunawardana, “Evaluating Recommendation Systems,” in Recommender Systems Handbook, 2011. doi: 10.1007/978-0-387-85820-3_8.

J. Ni, Y. Cai, G. Tang, and Y. Xie, “Collaborative filtering recommendation algorithm based on TF-IDF and user characteristics,” Applied Sciences (Switzerland), vol. 11, no. 20, 2021, doi: 10.3390/app11209554.

Frontiers in massive data analysis. 2013. doi: 10.17226/18374.




DOI: http://dx.doi.org/10.21927/ijubi.v7i1.4274

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Indonesian Journal of Business Intelligence (IJUBI)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Lisensi Creative Commons
IJUBI by https://ejournal.almaata.ac.id/index.php/IJUBI is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

View My Stats
Indonesian Journal of Business Intelligence (IJUBI)
Department of Information System
Alma Ata University
Email: ijubi@almaata.ac.id