ANALISIS SENTIMEN PENGGUNA MEDIA SOSIAL TERHADAP APLIKASI M-HEALTH PEDULI LINDUNGI DENGAN METODE LEXICON BASED DAN NAÏVE BAYES
Abstract
Keywords
Full Text:
PDFReferences
A. Fastyaningsih, D. Priyantika, F. T. Widyastuti, and A. R. Herawati, “KEBERHASILAN APLIKASI PEDULILINDUNGI TERHADAP KEBIJAKAN PERCEPATAN VAKSINASI DAN AKSES PELAYANAN PUBLIK DI INDONESIA,” vol. 6, no. 2, pp. 95–109, 2021.
Z. Rais, F. T. T. Hakiki, and R. Aprianti, “Sentiment Analysis of Peduli Lindungi Application Using the Naive Bayes Method,” j. scimathedu, vol. 11, no. 1, pp. 23–29, Jun. 2022, doi: 10.35877/sainsmat794.
H. Wijayanto, D. Daryono, and S. Nasiroh, “Analisis Forensik Pada Aplikasi Peduli Lindungi Terhadap Kebocoran Data Pribadi,” TIKomSiN, vol. 9, no. 2, p. 11, Nov. 2021, doi: 10.30646/tikomsin.v9i2.572.
P. Astuti and N. Nuris, “Penerapan Algoritma KNN Pada Analisis Sentimen Review Aplikasi Peduli Lindungi,” co-science, vol. 2, no. 2, pp. 137–142, Jul. 2022, doi: 10.31294/coscience.v2i2.1258.
R. Akmalia, I. Slamet, and H. Pratiwi, “Analisis Sentimen Twitter Berbahasa Indonesia Terhadap Aplikasi PeduliLindungi dengan Algoritma SVM, KNN, dan Regresi Logistik,” PSNMU, pp. 150–156, May 2022, doi: 10.30862/psnmu.v7i1.21.
M. R. U. Pulungan, D. E. Ratnawati, and B. Rahayudi, “Analisis Sentimen Ulasan Aplikasi PeduliLindungi dengan Metode Random Forest,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 6, no. 9, pp. 4378–4385, 2022.
S. Siswanto, Z. Mar’ah, A. S. D. Sabir, T. Hidayat, F. A. Adhel, and W. S. Amni, “The Sentiment Analysis Using Naïve Bayes with Lexicon-Based Feature on TikTok Application,” JV, vol. 6, no. 1, pp. 89–96, Nov. 2022, doi: 10.30812/varian.v6i1.2205.
D. Pajri, Y. Umaidah, and T. N. Padilah, “K-Nearest Neighbor Berbasis Particle Swarm Optimization untuk Analisis Sentimen Terhadap Tokopedia,” JuTISI, vol. 6, no. 2, Aug. 2020, doi: 10.28932/jutisi.v6i2.2658.
A. Firdaus and W. I. Firdaus, “Text Mining Dan Pola Algoritma Dalam Penyelesaian Masalah Informasi : (Sebuah Ulasan),” vol. 13, no. 1, 2021.
M. Romzi and B. Kurniawan, “PEMBELAJARAN PEMROGRAMAN PYTHON DENGAN PENDEKATAN LOGIKA ALGORITMA,” vol. 3, no. 2, 2020.
E. Y. Hidayat, R. W. Hardiansyah, and A. Affandy, “Analisis Sentimen Twitter untuk Menilai Opini Terhadap Perusahaan Publik Menggunakan Algoritma Deep Neural Network,” TEKNOSI, vol. 7, no. 2, pp. 108–118, Sep. 2021, doi: 10.25077/TEKNOSI.v7i2.2021.108-118.
A. Y. Permana and M. M. Effendi, “Analisis Sentimen pada Teks Opini Penilaian Kinerja Dosen dengan Pendekatan Algoritma KNN,” jikstik, vol. 19, no. 1, Mar. 2020, doi: 10.32409/jikstik.19.1.154.
R. Mahendrajaya, G. A. Buntoro, and M. B. Setyawan, “ANALISIS SENTIMEN PENGGUNA GOPAY MENGGUNAKAN METODE LEXICON BASED DAN SUPPORT VECTOR MACHINE,” jkt, vol. 3, no. 2, p. 52, Oct. 2019, doi: 10.24269/jkt.v3i2.270.
M. Al Khadafi, Kurnia Paranitha Kartika, and Filda Febrinita, “PENERAPAN METODE NAÏVE BAYES CLASSIFIER DAN LEXICON BASED UNTUK ANALISIS SENTIMEN CYBERBULLYING PADA BPJS,” jati, vol. 6, no. 2, pp. 725–733, Oct. 2022, doi: 10.36040/jati.v6i2.5633.
G. A. Buntoro, “Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter,” Journal Of Information Technology, vol. 2, no. 1, Mar. 2017, doi: 10.31284/j.integer.2017.v2i1.95.
Dr. A. Gruzd and P. M. J.D. M. A. ,., “Netlytic - social media text and social networks analyzer,” 2023 2006. https://netlytic.org/ (accessed Feb. 08, 2023).
R. L. Mustofa and B. Prasetiyo, “Sentiment analysis using lexicon-based method with naive bayes classifier algorithm on #newnormal hashtag in twitter,” J. Phys.: Conf. Ser., vol. 1918, no. 4, p. 042155, Jun. 2021, doi: 10.1088/1742-6596/1918/4/042155.
F. Amaliah and I. K. Dwi Nuryana, “Perbandingan Akurasi Metode Lexicon Based Dan Naive Bayes Classifier Pada Analisis Sentimen Pendapat Masyarakat Terhadap Aplikasi Investasi Pada Media Twitter,” JINACS, vol. 3, no. 03, pp. 384–393, Apr. 2022, doi: 10.26740/jinacs.v3n03.p384-393.
D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” Jurnal Sains Komputer & Informatika (J-SAKTI), vol. 5, pp. 697–711, Sep. 2021.
A. Akbar and R. A. Supono, “Prediksi Kelancaran Piutang Pelanggan pada PT. Citra Ina Feedmill dengan Menggunakan Algoritma Naïve Bayes dan K-Nearest Neighbors,” JIE, vol. 6, no. 1, p. 558, Feb. 2022, doi: 10.29040/jie.v6i1.4692.
DOI: http://dx.doi.org/10.21927/ijubi.v6i1.3275
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Indonesian Journal of Business Intelligence (IJUBI)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
IJUBI by https://ejournal.almaata.ac.id/index.php/IJUBI is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats
Indonesian Journal of Business Intelligence (IJUBI)
Department of Information System
Alma Ata University
Email: ijubi@almaata.ac.id