ANALISIS SENTIMEN PENGGUNA MEDIA SOSIAL TERHADAP APLIKASI M-HEALTH PEDULI LINDUNGI DENGAN METODE LEXICON BASED DAN NAÃVE BAYES
DOI:
https://doi.org/10.21927/ijubi.v6i1.3275Keywords:
pedulilindungi, satusehat, lexicon based, naïve bayesAbstract
Pedulilindungi atau satusehat merupakan aplikasi yang dirilis secara resmi guna menangani penyebaran virus Covid-19 dan vaksinasi. Namun, dikarenakan suatu insiden besarnya kebocoran data pribadi, terutama identitas pribadi, kepercayaan masyarakat terhadap aplikasi tersebut sangat rendah. Untuk mengetahui pendapat masyarakat saat ini maka dilakukanlah penelitian dengan mengkombinasikan metode Lexicon Based dan Naïve Bayes. Hasil klasifikasi sentiment memperoleh nilai yaitu 62% negative, 32% netral, 6% positif pada Tiktok. 56% negative, 37% netral, 7% positif pada Youtube. 100% positif pada Twitter, dengan jumlah keseluruhan 118 skor negative, 69 skor netral, 113 skor positif, maka dapat disumpulkan masyarakat memiliki opini negative pada aplikasi peduli lindungi. Hasil evaluasi kinerja model memperoleh akurasi 91%, presisi 94%, recall 82%, f1_scores 86% pada Tiktok, pada Youtube akurasi sebesar 90%, presisi 93%, recall 81%, f1_scores 84%. Pada Twitter akurasi 70%, presisi 23%, recall 33%, f1-scores 28%. Pengkombinasian metode Lexicon Based dan Naïve Bayes ini memiliki akurasi yang sangat tinggi pada media sosial Tiktok dan Youtube, sehingga untuk penelitian selanjutnya pada media sosial Twitter perbanyak data yang diambil. Juga penelitian ini diharapkan dapat membantu membangun kembali aplikasi supaya lebih optimal.References
A. Fastyaningsih, D. Priyantika, F. T. Widyastuti, and A. R. Herawati, “KEBERHASILAN APLIKASI PEDULILINDUNGI TERHADAP KEBIJAKAN PERCEPATAN VAKSINASI DAN AKSES PELAYANAN PUBLIK DI INDONESIA,†vol. 6, no. 2, pp. 95–109, 2021.
Z. Rais, F. T. T. Hakiki, and R. Aprianti, “Sentiment Analysis of Peduli Lindungi Application Using the Naive Bayes Method,†j. scimathedu, vol. 11, no. 1, pp. 23–29, Jun. 2022, doi: 10.35877/sainsmat794.
H. Wijayanto, D. Daryono, and S. Nasiroh, “Analisis Forensik Pada Aplikasi Peduli Lindungi Terhadap Kebocoran Data Pribadi,†TIKomSiN, vol. 9, no. 2, p. 11, Nov. 2021, doi: 10.30646/tikomsin.v9i2.572.
P. Astuti and N. Nuris, “Penerapan Algoritma KNN Pada Analisis Sentimen Review Aplikasi Peduli Lindungi,†co-science, vol. 2, no. 2, pp. 137–142, Jul. 2022, doi: 10.31294/coscience.v2i2.1258.
R. Akmalia, I. Slamet, and H. Pratiwi, “Analisis Sentimen Twitter Berbahasa Indonesia Terhadap Aplikasi PeduliLindungi dengan Algoritma SVM, KNN, dan Regresi Logistik,†PSNMU, pp. 150–156, May 2022, doi: 10.30862/psnmu.v7i1.21.
M. R. U. Pulungan, D. E. Ratnawati, and B. Rahayudi, “Analisis Sentimen Ulasan Aplikasi PeduliLindungi dengan Metode Random Forest,†Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 6, no. 9, pp. 4378–4385, 2022.
S. Siswanto, Z. Mar’ah, A. S. D. Sabir, T. Hidayat, F. A. Adhel, and W. S. Amni, “The Sentiment Analysis Using Naïve Bayes with Lexicon-Based Feature on TikTok Application,†JV, vol. 6, no. 1, pp. 89–96, Nov. 2022, doi: 10.30812/varian.v6i1.2205.
D. Pajri, Y. Umaidah, and T. N. Padilah, “K-Nearest Neighbor Berbasis Particle Swarm Optimization untuk Analisis Sentimen Terhadap Tokopedia,†JuTISI, vol. 6, no. 2, Aug. 2020, doi: 10.28932/jutisi.v6i2.2658.
A. Firdaus and W. I. Firdaus, “Text Mining Dan Pola Algoritma Dalam Penyelesaian Masalah Informasi : (Sebuah Ulasan),†vol. 13, no. 1, 2021.
M. Romzi and B. Kurniawan, “PEMBELAJARAN PEMROGRAMAN PYTHON DENGAN PENDEKATAN LOGIKA ALGORITMA,†vol. 3, no. 2, 2020.
E. Y. Hidayat, R. W. Hardiansyah, and A. Affandy, “Analisis Sentimen Twitter untuk Menilai Opini Terhadap Perusahaan Publik Menggunakan Algoritma Deep Neural Network,†TEKNOSI, vol. 7, no. 2, pp. 108–118, Sep. 2021, doi: 10.25077/TEKNOSI.v7i2.2021.108-118.
A. Y. Permana and M. M. Effendi, “Analisis Sentimen pada Teks Opini Penilaian Kinerja Dosen dengan Pendekatan Algoritma KNN,†jikstik, vol. 19, no. 1, Mar. 2020, doi: 10.32409/jikstik.19.1.154.
R. Mahendrajaya, G. A. Buntoro, and M. B. Setyawan, “ANALISIS SENTIMEN PENGGUNA GOPAY MENGGUNAKAN METODE LEXICON BASED DAN SUPPORT VECTOR MACHINE,†jkt, vol. 3, no. 2, p. 52, Oct. 2019, doi: 10.24269/jkt.v3i2.270.
M. Al Khadafi, Kurnia Paranitha Kartika, and Filda Febrinita, “PENERAPAN METODE NAÃVE BAYES CLASSIFIER DAN LEXICON BASED UNTUK ANALISIS SENTIMEN CYBERBULLYING PADA BPJS,†jati, vol. 6, no. 2, pp. 725–733, Oct. 2022, doi: 10.36040/jati.v6i2.5633.
G. A. Buntoro, “Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter,†Journal Of Information Technology, vol. 2, no. 1, Mar. 2017, doi: 10.31284/j.integer.2017.v2i1.95.
Dr. A. Gruzd and P. M. J.D. M. A. ,., “Netlytic - social media text and social networks analyzer,†2023 2006. https://netlytic.org/ (accessed Feb. 08, 2023).
R. L. Mustofa and B. Prasetiyo, “Sentiment analysis using lexicon-based method with naive bayes classifier algorithm on #newnormal hashtag in twitter,†J. Phys.: Conf. Ser., vol. 1918, no. 4, p. 042155, Jun. 2021, doi: 10.1088/1742-6596/1918/4/042155.
F. Amaliah and I. K. Dwi Nuryana, “Perbandingan Akurasi Metode Lexicon Based Dan Naive Bayes Classifier Pada Analisis Sentimen Pendapat Masyarakat Terhadap Aplikasi Investasi Pada Media Twitter,†JINACS, vol. 3, no. 03, pp. 384–393, Apr. 2022, doi: 10.26740/jinacs.v3n03.p384-393.
D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,†Jurnal Sains Komputer & Informatika (J-SAKTI), vol. 5, pp. 697–711, Sep. 2021.
A. Akbar and R. A. Supono, “Prediksi Kelancaran Piutang Pelanggan pada PT. Citra Ina Feedmill dengan Menggunakan Algoritma Naïve Bayes dan K-Nearest Neighbors,†JIE, vol. 6, no. 1, p. 558, Feb. 2022, doi: 10.29040/jie.v6i1.4692.
Downloads
Published
Issue
Section
License
COPYRIGHT TRANSFER FORM
The copyright to this article is transferred to Alma Ata University Press if and when the article is accepted for publication. The undersigned hereby transfers any and all rights in and to the paper including without limitation all copyrights to AAU Press. The undersigned hereby represents and warrants that the paper is original and that he/she is the author of the paper, except for material that is clearly identified as to its original source, with permission notices from the copyright owners where required. The undersigned represents that he/she has the power and authority to make and execute this assignment.
We declare that:
1. This paper has not been published in the same form elsewhere.
2. It will not be submitted anywhere else for publication prior to acceptance/rejection by this Journal.
3. A copyright permission is obtained for materials published elsewhere and which require this permission for reproduction.
Furthermore, I/We hereby transfer the unlimited rights of publication of the above mentioned paper in whole to AAU Press. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, microform, electronic form (offline, online) or any other reproductions of similar nature.
The corresponding author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors. This agreement is to be signed by at least one of the authors who have obtained the assent of the co-author(s) where applicable. After submission of this agreement signed by the corresponding author, changes of authorship or in the order of the authors listed will not be accepted.
Retained Rights/Terms and Conditions
Â
1. Authors retain all proprietary rights in any process, procedure, or article of manufacture described in the Work.
2. Authors may reproduce or authorize others to reproduce the Work or derivative works for the authors personal use or for company use, provided that the source and the AAU Press copyright notice are indicated, the copies are not used in any way that implies AAU Press endorsement of a product or service of any employer, and the copies themselves are not offered for sale.
3. Although authors are permitted to re-use all or portions of the Work in other works, this does not include granting third-party requests for reprinting, republishing, or other types of re-use.