PENERAPAN METODE DISCRETIZATION DAN ADABOOST UNTUK MENINGKATKAN AKURASI ALGORITMA KLASIFIKASI DALAM MEMPREDIKSI PENYAKIT JANTUNG
Abstract
Keywords
Full Text:
PDF (Indonesian)References
Kementrian Kesehatan Republik Indonesia, “Hasil Riskesdas 2013,” Expert Opin. Investig. Drugs, vol. 7, no. 5, pp. 803–809, 2013, doi: 10.1517/13543784.7.5.803.
Kementrian Kesehatan Republik Indonesia, “Laporan Riskesdas 2018 Nasional.pdf.” p. 674, 2019.
M. S. Pathan, A. Nag, M. M. Pathan, and S. Dev, “Analyzing the impact of feature selection on the accuracy of heart disease prediction,” Healthc. Anal., vol. 2, no. February, p. 100060, 2022, doi: 10.1016/j.health.2022.100060.
A. Alhamad, A. I. S. Azis, B. Santoso, and S. Taliki, “Prediksi Penyakit Jantung Menggunakan Metode-Metode Machine Learning Berbasis Ensemble – Weighted Vote,” J. Edukasi dan Penelit. Inform., vol. 5, no. 3, p. 352, 2019, doi: 10.26418/jp.v5i3.37188.
C. F. Tsai and Y. C. Chen, “The optimal combination of feature selection and data discretization: An empirical study,” Inf. Sci. (Ny)., vol. 505, pp. 282–293, 2019, doi: 10.1016/j.ins.2019.07.091.
R. T. Vulandari, Data Mining : Teori dan Aplikasi Rapidminer. Yogyakarta: Penerbit Gava Media, 2017.
Suyanto, Data Mining Untuk Klasifikasi dan Klastering Data. Bandung: Informatika Bandung, 2017.
S. Guggari, V. Kadappa, and V. Umadevi, “Non-sequential partitioning approaches to decision tree classifier,” Futur. Comput. Informatics J., vol. 3, no. 2, pp. 275–285, 2018, doi: 10.1016/j.fcij.2018.06.003.
A. Nurzahputra and M. A. Muslim, “Peningkatan Akurasi Pada Algoritma C4.5 Menggunakan Adaboost Untuk Meminimalkan Resiko Kredit,” 2017.
N. E. I. Karabadji, I. Khelf, H. Seridi, S. Aridhi, D. Remond, and W. Dhifli, “A data sampling and attribute selection strategy for improving decision tree construction,” Expert Syst. Appl., vol. 129, pp. 84–96, 2019, doi: 10.1016/j.eswa.2019.03.052.
Y. Guo, S. Han, Y. Li, C. Zhang, and Y. Bai, “K-Nearest Neighbor combined with guided filter for hyperspectral image classification,” Procedia Comput. Sci., vol. 129, pp. 159–165, 2018, doi: 10.1016/j.procs.2018.03.066.
J. Gou, H. Ma, W. Ou, S. Zeng, Y. Rao, and H. Yang, “A generalized mean distance-based k-nearest neighbor classifier,” Expert Syst. Appl., vol. 115, pp. 356–372, 2019, doi: 10.1016/j.eswa.2018.08.021.
S. Ramírez-Gallego, S. García, and F. Herrera, “Online entropy-based discretization for data streaming classification,” Futur. Gener. Comput. Syst., vol. 86, pp. 59–70, 2018, doi: 10.1016/j.future.2018.03.008.
S. Cheng, B. Liu, Y. Shi, Y. Jun, and B. Li, Data Mining and Big Data. 2015.
E. Listiana and M. A. Muslim, “Penerapan Adaboost Untuk Klasifikasi Support Vector Machine Guna Meningkatkan Akurasi Pada Diagnosa Chronic Kidney Disease,” no. 2015, pp. 35–40, 2017.
M. A. Banjarsari, I. Budiman, and A. Farmadi, “Penerapan K-Optimal Pada Algoritma Knn Untuk Prediksi Kelulusan Tepat Waktu Mahasiswa Program Studi Ilmu Komputer Fmipa Unlam Berdasarkan Ip Sampai Dengan Semester 4,” Klik - Kumpul. J. Ilmu Komput., vol. 2, no. 2, pp. 159–173, 2016, doi: 10.20527/KLIK.V2I2.26.
Indrayanti, D. Sugianti, and M. A. Al Karomi, “Optimasi Parameter K Pada Algoritma K-Nearest Neighbour Untuk Klasifikasi Penyakit Diabetes Mellitus,” SNATIF, pp. 551–554, 2017.
DOI: http://dx.doi.org/10.21927/ijubi.v5i2.2689
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Indonesian Journal of Business Intelligence (IJUBI)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
IJUBI by https://ejournal.almaata.ac.id/index.php/IJUBI is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats
Indonesian Journal of Business Intelligence (IJUBI)
Department of Information System
Alma Ata University
Email: ijubi@almaata.ac.id