PENERAPAN METODE DISCRETIZATION DAN ADABOOST UNTUK MENINGKATKAN AKURASI ALGORITMA KLASIFIKASI DALAM MEMPREDIKSI PENYAKIT JANTUNG
DOI:
https://doi.org/10.21927/ijubi.v5i2.2689Keywords:
Penyakit Jantung Discretization, Adaboost, Decision Tree C45, KNNAbstract
Angka kematian yang disebabkan oleh penyakit jantung dapat dikurangi jika ada diagnosa yang akurat sejak dini. Penelitian sebelumnya dalam memprediksi penyakit jantung dengan tingkat akurasi telah dilakukan namun menghasilkan akurasi yang kecil pada algoritma Decision Tree C4.5 dan K-Nearest Neighbor (KNN). Untuk itu diperlukan adanya peningkatan akurasi agar menghasilkan keakuratan informasi. Tujuan penelitian ini adalah untuk meningkatkan akurasi dari algortima klasifikasi Decision Tree C4.5 dan K-Nearest Neighbor (KNN) menggunakan data heart disease dataset dari kaggle.com dengan menerapkan teknik discretization dan metode ensemble yaitu adaboost. Hasil penelitian ini dengan algoritma tunggal menghasilkan akurasi sebesar 89,17% pada Decision Tree dan 84,68% pada KNN, sedangkan Decision tree menggunakan teknik discretization dan adaboots sebesar 99,81% dan KNN menggunakan teknik discretization dan adaboots sebesar 92,88%. Hasil menunjukkan adanya peningkatan algortima klasifikasi menggunakan teknik discretization dan adaboots.References
Kementrian Kesehatan Republik Indonesia, “Hasil Riskesdas 2013,†Expert Opin. Investig. Drugs, vol. 7, no. 5, pp. 803–809, 2013, doi: 10.1517/13543784.7.5.803.
Kementrian Kesehatan Republik Indonesia, “Laporan Riskesdas 2018 Nasional.pdf.†p. 674, 2019.
M. S. Pathan, A. Nag, M. M. Pathan, and S. Dev, “Analyzing the impact of feature selection on the accuracy of heart disease prediction,†Healthc. Anal., vol. 2, no. February, p. 100060, 2022, doi: 10.1016/j.health.2022.100060.
A. Alhamad, A. I. S. Azis, B. Santoso, and S. Taliki, “Prediksi Penyakit Jantung Menggunakan Metode-Metode Machine Learning Berbasis Ensemble – Weighted Vote,†J. Edukasi dan Penelit. Inform., vol. 5, no. 3, p. 352, 2019, doi: 10.26418/jp.v5i3.37188.
C. F. Tsai and Y. C. Chen, “The optimal combination of feature selection and data discretization: An empirical study,†Inf. Sci. (Ny)., vol. 505, pp. 282–293, 2019, doi: 10.1016/j.ins.2019.07.091.
R. T. Vulandari, Data Mining : Teori dan Aplikasi Rapidminer. Yogyakarta: Penerbit Gava Media, 2017.
Suyanto, Data Mining Untuk Klasifikasi dan Klastering Data. Bandung: Informatika Bandung, 2017.
S. Guggari, V. Kadappa, and V. Umadevi, “Non-sequential partitioning approaches to decision tree classifier,†Futur. Comput. Informatics J., vol. 3, no. 2, pp. 275–285, 2018, doi: 10.1016/j.fcij.2018.06.003.
A. Nurzahputra and M. A. Muslim, “Peningkatan Akurasi Pada Algoritma C4.5 Menggunakan Adaboost Untuk Meminimalkan Resiko Kredit,†2017.
N. E. I. Karabadji, I. Khelf, H. Seridi, S. Aridhi, D. Remond, and W. Dhifli, “A data sampling and attribute selection strategy for improving decision tree construction,†Expert Syst. Appl., vol. 129, pp. 84–96, 2019, doi: 10.1016/j.eswa.2019.03.052.
Y. Guo, S. Han, Y. Li, C. Zhang, and Y. Bai, “K-Nearest Neighbor combined with guided filter for hyperspectral image classification,†Procedia Comput. Sci., vol. 129, pp. 159–165, 2018, doi: 10.1016/j.procs.2018.03.066.
J. Gou, H. Ma, W. Ou, S. Zeng, Y. Rao, and H. Yang, “A generalized mean distance-based k-nearest neighbor classifier,†Expert Syst. Appl., vol. 115, pp. 356–372, 2019, doi: 10.1016/j.eswa.2018.08.021.
S. RamÃrez-Gallego, S. GarcÃa, and F. Herrera, “Online entropy-based discretization for data streaming classification,†Futur. Gener. Comput. Syst., vol. 86, pp. 59–70, 2018, doi: 10.1016/j.future.2018.03.008.
S. Cheng, B. Liu, Y. Shi, Y. Jun, and B. Li, Data Mining and Big Data. 2015.
E. Listiana and M. A. Muslim, “Penerapan Adaboost Untuk Klasifikasi Support Vector Machine Guna Meningkatkan Akurasi Pada Diagnosa Chronic Kidney Disease,†no. 2015, pp. 35–40, 2017.
M. A. Banjarsari, I. Budiman, and A. Farmadi, “Penerapan K-Optimal Pada Algoritma Knn Untuk Prediksi Kelulusan Tepat Waktu Mahasiswa Program Studi Ilmu Komputer Fmipa Unlam Berdasarkan Ip Sampai Dengan Semester 4,†Klik - Kumpul. J. Ilmu Komput., vol. 2, no. 2, pp. 159–173, 2016, doi: 10.20527/KLIK.V2I2.26.
Indrayanti, D. Sugianti, and M. A. Al Karomi, “Optimasi Parameter K Pada Algoritma K-Nearest Neighbour Untuk Klasifikasi Penyakit Diabetes Mellitus,†SNATIF, pp. 551–554, 2017.
Downloads
Published
Issue
Section
License
COPYRIGHT TRANSFER FORM
The copyright to this article is transferred to Alma Ata University Press if and when the article is accepted for publication. The undersigned hereby transfers any and all rights in and to the paper including without limitation all copyrights to AAU Press. The undersigned hereby represents and warrants that the paper is original and that he/she is the author of the paper, except for material that is clearly identified as to its original source, with permission notices from the copyright owners where required. The undersigned represents that he/she has the power and authority to make and execute this assignment.
We declare that:
1. This paper has not been published in the same form elsewhere.
2. It will not be submitted anywhere else for publication prior to acceptance/rejection by this Journal.
3. A copyright permission is obtained for materials published elsewhere and which require this permission for reproduction.
Furthermore, I/We hereby transfer the unlimited rights of publication of the above mentioned paper in whole to AAU Press. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, microform, electronic form (offline, online) or any other reproductions of similar nature.
The corresponding author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors. This agreement is to be signed by at least one of the authors who have obtained the assent of the co-author(s) where applicable. After submission of this agreement signed by the corresponding author, changes of authorship or in the order of the authors listed will not be accepted.
Retained Rights/Terms and Conditions
Â
1. Authors retain all proprietary rights in any process, procedure, or article of manufacture described in the Work.
2. Authors may reproduce or authorize others to reproduce the Work or derivative works for the authors personal use or for company use, provided that the source and the AAU Press copyright notice are indicated, the copies are not used in any way that implies AAU Press endorsement of a product or service of any employer, and the copies themselves are not offered for sale.
3. Although authors are permitted to re-use all or portions of the Work in other works, this does not include granting third-party requests for reprinting, republishing, or other types of re-use.