KOMPARASI METODE SUPPORT VECTOR MACHINE DAN NAÏVE BAYES DALAM KLASIFIKASI PELUANG PENYAKIT SERANGAN JANTUNG

Musthofa Galih Pradana, Pujo Hari Saputro, Dhina Puspasari Wijaya

Abstract


The death rate in the world per year is 17.9 million due to cardiovascular disease, including heart and blood vessel disorders. This needs to be given more attention to anticipate the possible risk of a heart attack. One of the contributions in the field of technology to provide useful information about the risk of heart disease is by using a data processing approach or data mining technique by classifying the vulnerability to heart disease risk. The classification method used is Support Vector Machine and Naïve Bayes. The classification method will be carried out in a comparative process and the method that has the best accuracy will be sought. The scenarios used are 2 test scenarios, namely dividing the training data by 20% in scenario 1 and 40% in scenario 2. The final results of the research obtained are the best accuracy in the Support Vector Machine with scenario 1 of 87%.


Keywords


Classification, Naïve Bayes, Support Vector Machine, Heart Disease

Full Text:

PDF (Indonesian)

References


W. H. Organization., “Cardiovascular Diseases.,” World Health Organization, 2020, p. 2020.

V. Kale, Enterptrise Performance Intelligence and Decision Patterns. CRC Press, 2018.

H. Tuhuteru and A. Iriani, “Analisis Sentimen Perusahaan Listrik Negara Cabang Ambon Menggunakan Metode Support Vector Machine dan Naive Bayes Classifier,” J. Inform. J. Pengemb. IT, vol. 3, no. 3, pp. 394–401, 2018, doi: 10.30591/jpit.v3i3.977.

I. Riadi, R. Umar, and F. D. Aini, “Analisis Perbandingan Detection Traffic Anomaly Dengan Metode Naive Bayes Dan Support Vector Machine (Svm),” Ilk. J. Ilm., vol. 11, no. 1, pp. 17–24, 2019, doi: 10.33096/ilkom.v11i1.361.17-24.

A. Supriyatna and W. P. Mustika, “Komparasi Algoritma Naive bayes dan SVM Untuk Memprediksi Keberhasilan Imunoterapi Pada Penyakit Kutil,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 2, no. 2, p. 152, 2018, doi: 10.30645/j-sakti.v2i2.78.

O. Arifin and T. B. Sasongko, “Analisa perbandingan tingkat performansi metode support vector machine dan naïve bayes classifier,” in Seminar Nasional Teknologi Informasi dan Multimedia 2018, 2018, vol. 6, no. 1, pp. 67–72.

H. T. Sueno, “Multi-class Document Classification using Support Vector Machine (SVM) Based on Improved Naïve Bayes Vectorization Technique,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 3, pp. 3937–3944, 2020, doi: 10.30534/ijatcse/2020/216932020.

J. Gu and S. Lu, “An effective intrusion detection approach using SVM with naïve Bayes feature embedding,” Comput. Secur., vol. 103, p. 102158, 2021, doi: 10.1016/j.cose.2020.102158.

Y. Narayan, “Comparative analysis of SVM and Naive Bayes classifier for the SEMG signal classification,” Mater. Today Proc., vol. 37, no. Part 2, pp. 3241–3245, 2020, doi: 10.1016/j.matpr.2020.09.093.

F. Fitriana, E. Utami, and H. Al Fatta, “Analisis Sentimen Opini Terhadap Vaksin Covid - 19 pada Media Sosial Twitter Menggunakan Support Vector Machine dan Naive Bayes,” J. Komtika (Komputasi dan Inform., vol. 5, no. 1, pp. 19–25, 2021, doi: 10.31603/komtika.v5i1.5185.

D. A. Kristiyanti, A. H. Umam, M. Wahyudi, R. Amin, and L. Marlinda, “Comparison of SVM Naïve Bayes Algorithm for Sentiment Analysis Toward West Java Governor Candidate Period 2018-2023 Based on Public Opinion on Twitter,” 2018 6th Int. Conf. Cyber IT Serv. Manag. CITSM 2018, no. Citsm 2018, pp. 1–6, 2019, doi: 10.1109/CITSM.2018.8674352.

S. Dey, S. Wasif, D. S. Tonmoy, S. Sultana, J. Sarkar, and M. Dey, “A Comparative Study of Support Vector Machine and Naive Bayes Classifier for Sentiment Analysis on Amazon Product Reviews,” 2020 Int. Conf. Contemp. Comput. Appl. IC3A 2020, pp. 217–220, 2020, doi: 10.1109/IC3A48958.2020.233300.

S. Widaningsih, “Perbandingan Metode Data Mining Untuk Prediksi Nilai Dan Waktu Kelulusan Mahasiswa Prodi Teknik Informatika Dengan Algoritma C4,5, Naïve Bayes, Knn Dan Svm,” J. Tekno Insentif, vol. 13, no. 1, pp. 16–25, 2019, doi: 10.36787/jti.v13i1.78.

M. K. D. I. G. W. N. M. S. 2017 Dicky Nofriansyah, S.Kom., ALGORITMA DATA MINING DAN PENGUJIAN. DEEPUBLISH, 2017.

M. Kantardzic, Advances in Data Mining. 2019.




DOI: http://dx.doi.org/10.21927/ijubi.v5i2.2659

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Indonesian Journal of Business Intelligence (IJUBI)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Lisensi Creative Commons
IJUBI by https://ejournal.almaata.ac.id/index.php/IJUBI is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

View My Stats
Indonesian Journal of Business Intelligence (IJUBI)
Department of Information System
Alma Ata University
Email: ijubi@almaata.ac.id